tokenpocket的官网地址是什么|aln

作者: tokenpocket的官网地址是什么
2024-03-07 16:59:46

氮化铝_百度百科

百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心氮化铝播报讨论上传视频耐热冲击材料收藏查看我的收藏0有用+10本词条由“科普中国”科学百科词条编写与应用工作项目 审核 。氮化铝,共价键化合物,化学式为AIN,是共价晶体,属类金刚石氮化物、六方晶系,纤锌矿型的晶体结构,无毒,呈白色或灰白色。 [1]中文名氮化铝 [3]外文名Aluminum nitride [3]化学式AIN [3]CAS登录号24304-00-5 [3]沸    点2249 ℃外    观白色或灰白色粉末应    用良好的耐热冲击材料性    质原子晶体目录1计算化学数据2编号系统3简介4性质5毒理学数据6生态学数据7贮存方法8历史9特性10应用计算化学数据播报编辑1.疏水参数计算参考值(XlogP):无2.氢键供体数量:0 [3]3.氢键受体数量:1 [3]4.可旋转化学键数量:0 [3]5.互变异构体数量:无6.拓扑分子极性表面积23.8 [3]7.重原子数量:2 [3]8.表面电荷:0 [3]9.复杂度:10 [3]10.同位素原子数量:0 [3]11.确定原子立构中心数量:0 [3]12.不确定原子立构中心数量:0 [3]13.确定化学键立构中心数量:0 [3]14.不确定化学键立构中心数量:0 [3]15.共价键单元数量:1 [2]编号系统播报编辑CAS号:24304-00-5MDL号:MFCD00003429EINECS号:246-140-8 [3]RTECS号:暂无BRN号:暂无PubChem号:24854500 [2]简介播报编辑氮化铝,共价键化合物,是共价晶体,属类金刚石氮化物、六方晶系,纤锌矿型的晶体结构,无毒,呈白色或灰白色。性质播报编辑氮化铝晶胞AlN最高可稳定到2200℃。室温强度高,且强度随温度的升高下降较慢。导热性好,热膨胀系数小,是良好的耐热冲击材料。抗熔融金属侵蚀的能力强,是熔铸纯铁、铝或铝合金理想的坩埚材料。氮化铝还是电绝缘体,介电性能良好,用作电器元件也很有希望。砷化镓表面的氮化铝涂层,能保护它在退火时免受离子的注入。氮化铝还是由六方氮化硼转变为立方氮化硼的催化剂。室温下与水缓慢反应.可由铝粉在氨或氮气氛中800~1000℃合成,产物为白色到灰蓝色粉末。或由Al2O3-C-N2体系在1600~1750℃反应合成,产物为灰白色粉末。或氯化铝与氨经气相反应制得.涂层可由AlCl3-NH3体系通过气相沉积法合成 [1]。AlN+3H2O==催化剂===Al(OH)3↓+NH3↑毒理学数据播报编辑在皮肤上:造成腐蚀性影响。刺激皮肤和粘膜。在眼睛上:强烈的腐蚀性影响。刺激的作用。 [2]生态学数据播报编辑对水是稍微危害的,若无政府许可,勿将材料排入周围环境。 [2]贮存方法播报编辑干性的保护气体下处置,保持贮藏器密封。放入紧密的贮藏器内,储存在阴凉,干燥的地方。 [2]历史播报编辑氮化铝氮化铝于1877年首次合成。至1980年代,因氮化铝是一种陶瓷绝缘体(聚晶体物料为 70-210 W‧m−1‧K−1,而单晶体更可高达 275 W‧m−1‧K−1 ),使氮化铝有较高的传热能力,至使氮化铝被大量应用于微电子学。与氧化铍不同的是氮化铝无毒。氮化铝用金属处理,能取代矾土及氧化铍用于大量电子仪器。氮化铝可通过氧化铝和碳的还原作用或直接氮化金属铝来制备。氮化铝是一种以共价键相连的物质,它有六角晶体结构,与硫化锌、纤维锌矿同形。此结构的空间组为P63mc。要以热压及焊接式才可制造出工业级的物料。物质在惰性的高温环境中非常稳定。在空气中,温度高于700℃时,物质表面会发生氧化作用。在室温下,物质表面仍能探测到5-10纳米厚的氧化物薄膜。直至1370℃,氧化物薄膜仍可保护物质。但当温度高于1370℃时,便会发生大量氧化作用。直至980℃,氮化铝在氢气及二氧化碳中仍相当稳定。矿物酸通过侵袭粒状物质的界限使它慢慢溶解,而强碱则通过侵袭粒状氮化铝使它溶解。物质在水中会慢慢水解。氮化铝可以抵抗大部分融解的盐的侵袭,包括氯化物及冰晶石〔即六氟铝酸钠〕。特性播报编辑(1)热导率高(约320W/m·K),接近BeO和SiC,是Al2O3的5倍以上;(2)热膨胀系数(4.5×10-6℃)与Si(3.5~4×10-6℃)和GaAs(6×10-6℃)匹配;(3)各种电性能(介电常数、介质损耗、体电阻率、介电强度)优良;(4)机械性能好,抗折强度高于Al2O3和BeO陶瓷,可以常压烧结;(5)纯度高;(6)光传输特性好;(7)无毒;(8)可采用流延工艺制作。是一种很有前途的高功率集成电路基片和包装材料。应用播报编辑有报告指现今大部分研究都在开发一种以半导体(氮化镓或合金铝氮化镓)为基础且运行於紫外线的发光二极管,而光的波长为250纳米。在2006年5月有报告指一个无效率的二极管可发出波长为210纳米的光波[1]。以真空紫外线反射率量出单一的氮化铝晶体上有6.2eV的能隙。理论上,能隙允许一些波长为大约200纳米的波通过。但在商业上实行时,需克服不少困难。氮化铝应用於光电工程,包括在光学储存介面及电子基质作诱电层,在高的导热性下作晶片载体,以及作军事用途。由于氮化铝压电效应的特性,氮化铝晶体的外延性伸展也用於表面声学波的探测器。而探测器则会放置於矽晶圆上。只有非常少的地方能可靠地制造这些细的薄膜。利用氮化铝陶瓷具有较高的室温和高温强度,膨胀系数小,导热性好的特性,可以用作高温结构件热交换器材料等。利用氮化铝陶瓷能耐铁、铝等金属和合金的溶蚀性能,可用作Al、Cu、Ag、Pb等金属熔炼的坩埚和浇铸模具材料。2023年,休斯顿大学研究团队研制出一种氮化铝传感器,并证明其能在1000℃左右的高温下工作,这是压电传感器中最高的工作温度。 [4]新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000

AlN薄膜为什么这么火? - 知乎

AlN薄膜为什么这么火? - 知乎切换模式写文章登录/注册AlN薄膜为什么这么火?Tom聊芯片智造做射频滤波器,LED,激光二极管,mems压电的朋友,应该对于AlN一点也不陌生。几乎高端一点的器件都离不开AlN薄膜,AlN薄膜逐渐成为了微电子、光电子,光学领域的焦点。那么为什么大家都如此青睐AlN薄膜?AlN有哪些优点?AlN,即氮化铝,III-V族化合物。宽带隙:AlN的带隙约为6.1 - 6.2 eV,作为对比,硅的带隙宽度约为1.1 eV,远远低于AlN,这意味着AlN在常温下具有良好的绝缘性。材料的带隙宽度决定了其作为半导体的特性,包括其导电性、光学性质等。带隙指的是禁带,是一种能量范围,在这个范围内,电子不能存在于材料中,即无法导电。只有当外加能量足够时,电子才能从价带跃迁到导带,从而导致导电。由于其具有宽带隙的特点,AlN可在深紫外区域发光,这在紫外发光二极管(UV LEDs)中应用广泛,AlN成为某些光电器件的理想基板材料。压电特性压电效应是某些材料在受到机械应力时产生电荷,或在施加电场时发生形状变化的特性。AlN是一个典型的压电材料,它在受到机械应力时会产生电压,反之亦然。AlN是一种无铅压电材料,铅在在某些应用中是受到严格控制的,相对于含铅的压电材料(PZT),具有更大的优势。由于其较低的机械损耗,AlN具有高品质因子(Q值),Q值在高频的应用中十分重要,因此在在高频应用中特别受欢迎。硬度高具有很高的硬度。它的摩氏硬度大约为3-4,接近一些硬质材料如氮化硅(Si3N4),使其能够在高磨损环境中持续使用。稳定性好AlN的熔点大约为2200°C。在低于其熔点的温度下,AlN对大多数化学腐蚀剂和高温环境都很稳定。高热导率:它具有高达 321 W/(m·K) 的高导热率。AlN的结构特点刚才我们介绍了AlN的外在品质,所谓‘相由心生’,那么AlN的“心”才是支撑它具有如此多优点的根因。AlN是典型的六方密排结构。什么是六方密排结构?密排六方结构指原子在三维空间中以六边形密排的方式排列的晶体结构。在这种结构中,每个原子都被12个其他原子紧密包围。这种结构可以为材料提供高的硬度以及其他的优点。AlN的掺杂用于n型掺杂,掺钪(Sc)是AlN的一种比较常见的选择。而P型掺杂,目前实现起来还具有一定难度。Sc的原子大小和Al相近,可以有效地替代Al位置,而不会引入太多的晶体缺陷。通过掺杂Sc,可以调整AlN的能带结构,显著增强AlN的压电特性。在整个AlN薄膜中均匀地分布Sc是一个挑战,而掺Sc的AlN后,其晶体缺陷概率大大提高,目前国内仅限于实验室研究,未见大规模量产的报道。 原创不易,转载需联系开白名单并注明出自本处。 我建了一个知识分享的社区,陆续上传一些芯片制造各工序,封装与测试各工序,建厂方面的知识,供应商信息等半导体资料。目前已上各类半导体文档510余个,解答问题170余条,并在不断更新中,内容远远丰富于日常发的文章。当然也可仅关注本号,我定期都有发文章在上面,可以满足小需求的读者。扫码即可本文使用 文章同步助手 同步发布于 2023-08-28 13:53・IP 属地广东芯片(集成电路)半导体​赞同​​添加评论​分享​喜欢​收藏​申请

氮化铝_化工百科

氮化铝_化工百科

化工百科

首页

产品供应商后台

了解会员服务

登陆

免费注册

搜供应商

搜百科

氮化铝 购买咨询

氮化铝(Aluminum nitride)

CAS: 24304-00-5

化学式: AlN

主页 产品无机化工通用试剂 氮化铝

氮化铝是一种无机化合物,化学式为AlN。它具有以下性质:

1. 结构特点:氮化铝晶体结构属于六方晶系,晶格参数相对稳定,有高熔点(约为2500℃)和较高硬度。

2. 热性能:氮化铝具有优异的热导率和热稳定性,能够在高温环境下保持稳定性。

3. 电性能:氮化铝是一种具有绝缘性质的材料,但它也能够通过掺杂其他元素来调控其导电性能,使其具备半导体或导体特性。

氮化铝具有广泛的用途,包括但不限于以下几个方面:

1. 电子器件:由于氮化铝具有优异的电热性能和高频特性,被广泛应用于高功率电子器件、射频组件和高频电路等领域。

2. 照明器件:氮化铝具备带隙宽度较大的特点,可用于制造高亮度、高色温的LED(发光二极管)。

3. 太阳能电池:氮化铝在太阳能电池领域中有应用前景,可以提高太阳能电池的效率。

制备氮化铝通常使用真空热分解法或热化学气相沉积法。

关于安全信息,氮化铝一般是一种相对安全的材料,但在操作和储存过程中需要注意以下几点:

1. 避免吸入:氮化铝粉末可产生细小颗粒,应避免吸入到呼吸道中,因为其细小颗粒可能对健康造成危害。

2. 火灾风险:氮化铝对于带电粒子或火源具有燃烧的风险,应远离明火、高温和火源。

3. 皮肤接触:氮化铝粉末可能对皮肤有刺激作用,在接触后应立即用清水冲洗。

4. 排放限制:氮化铝废物的处置需符合相关环境保护法规的要求。

综上所述,氮化铝具有多种性质和广泛的应用,并且在使用过程中需要注意相应的安全措施。最后更新:2023-12-21 00:21:33

中文名 氮化铝英文名 Aluminum nitride别名 氮化铝氮化铝,99.5% metals basis,2.0μm英文别名 AlNALN BALN AALN CALN ATnitridoaluminumALUMINUM NITRIDEAluminum nitrideAluminium nitrideAluminum nitride (AlN)aluminum nitrogen(-3) anionCAS 24304-00-5EINECS 246-140-8化学式 AlN分子量 40.99InChI InChI=1/Al.N/q+3;-3InChIKey PIGFYZPCRLYGLF-UHFFFAOYSA-N密度 3.26 g/mL at 25 °C (lit.)熔点 >2200 °C (lit.)水溶性 MAY DECOMPOSE蒸汽压 0Pa at 25℃溶解度 溶于无机酸。 存储条件 Room Temprature稳定性 稳定。敏感性 Moisture Sensitive外观 粉末比重 3.26颜色 White to pale yellowMerck 14,353物化性质 氮化铝,共价键化合物,是原子晶体,属类金刚石氮化物、六方晶系,纤锌矿型的晶体结构,无毒,呈白色或灰白色。氮化铝(AlN)是一种人工合成矿物,并非天然存在于大自然中。AlN的晶体结构类型为六方纤锌矿型,具有密度小(3.26g/cm3)、强度高、耐热性好(约3060℃分解)、热导率高、耐腐蚀等优点。氮化铝(AlN)最高可稳定到2200℃。室温强度高,且强度随温度的升高下降较慢。导热性好,热膨胀系数小,是良好的耐热冲击材料。抗熔融金属侵蚀的能力强,是熔铸纯铁、铝或铝合金理想的坩埚材料。氮化铝还是电绝缘体,介电性能良好,用作电器元件也很有希望。砷化镓表面的氮化铝涂层,能保护它在退火时免受离子的注入。氮化铝还是由六方氮化硼转变为立方氮化硼的催化剂。室温下与水缓慢反应.可由铝粉在氨或氮气氛中800~1000℃合成,产物为白色到灰蓝色粉末。或由Al2O3-C-N2体系在1600~1750℃反应合成,产物为灰白色粉末。或氯化铝与氨经气相反应制得.涂层可由AlCl3-NH3体系通过气相沉积法合成。AlN+3H2O==催化剂===Al(OH)3↓+NH3↑MDL号 MFCD00003429危险品标志 Xi - 刺激性物品

C - 腐蚀性物品

风险术语 R36/37/38 - 刺激眼睛、呼吸系统和皮肤。

R34 - 引起灼伤。

安全术语 S26 - 不慎与眼睛接触后,请立即用大量清水冲洗并征求医生意见。

S37/39 - 戴适当的手套和护目镜或面具。

S45 - 若发生事故或感不适,立即就医(可能的话,出示其标签)。

S36/37/39 - 穿戴适当的防护服、手套和护目镜或面具。

危险品运输编号 UN3178WGK Germany 3RTECS BD1055000TSCA Yes海关编号 28500090Hazard Class 4.1Packing Group II上游原料 氮(高纯) 炭黑 氧化铝 参考资料 展开查看 1. Wu, Hao, et al. "Low molecular weight heparin modified bone targeting liposomes for orthotopic osteosarcoma and breast cancer bone metastatic tumors." International Journal of Biological Macromolecules 164 (2020): 2583-2597.https://doi.org/10.1016/j.ijbiom

氮化铝 - 性质可信数据氮化铝属六方晶系,纤维锌矿型结构。纯品为蓝白色,通常为灰色或灰白色。相对密度3. 26;莫氏硬度9;热膨胀系数4. 84×10-6 K-1   (25~600℃);热导率30. IW/(m.K)(200℃);电阻率2×iolln,-cm (25℃);介电常数8.15。室温强度高,且强度随温度的升高下降较慢。导热性好,热膨胀系数小,是良好的耐热冲击材料。具有优异的抗热震性。AIN导热率是A12 03的2~3倍,热压时强度比A1z Oa还高。氮化铝对A1和其他熔融金属、砷化镓等具有良好的耐蚀性,尤其对熔融A1液具有极好的耐侵蚀性,还具有优良的电绝缘性和介电性质。但氮化铝的高温抗氧化性差,在大气中易吸潮、水解,和湿空气、水或含水液体接触产生热和氮并迅速分解。在2516℃分解,热硬度很高,即使在分解温度前也不软化变形。

最后更新:2024-01-02 23:10:35氮化铝 - 制法可信数据将氨和铝直接进行氮化反应,经粉碎、分级制得氮化铝粉末。或者将氧化铝和炭充分混合,在电炉中于1700℃还原制得氮化铝。

最后更新:2022-01-01 09:05:22氮化铝 - 介绍本产品纯度高、粒径小、分布均匀、比表面积大、高表面活性、松装密度低,良好的注射成形性能;用于复合材料,与半导体硅匹配性好、界面相容性好,可提高复合材料的机械性能和导热介电性能。最后更新:2022-10-16 17:15:13氮化铝 - 用途可信数据氮化铝陶瓷是一种高技术新型陶瓷。氮化铝基板具有极高的热导率,无毒、耐腐蚀、耐高温,热化学稳定性好等特点,是大规模集成电路,半导体模块电路和大功率器件的理想封装材料、散热材料、电路元件及互连线承载体。也是提高高分子材料热导率和力学性能的最佳添加料,氮化铝陶瓷还可用作熔炼有色金属和半导体材料砷化镓的坩埚、热电偶的保护管、高温绝缘件、微波介电材料、耐高温、耐腐蚀结构陶瓷及透明氮化铝微波陶瓷制品,用作高导热陶瓷生产原料及树脂填料等。氮化铝是电绝缘体,介电性能良好。砷化镓表面的氮化铝涂层,能保护它在退火时免受离子的注入。

最后更新:2022-01-01 09:05:23

查看氮化铝结构式

供应商列表

武汉兴众诚科技有限公司现货供应产品名: 氮化铝

询盘CAS: 24304-00-5产地: 湖北包装: 25KG/桶价格: 电联库存: 现货电话: 027-83389957手机: 18627766980电子邮件: 1024042217@qq.comQQ: 1024042217 微信: 18627766980产品描述: 氮化铝 氮化铝 英文名称: Aluminum nitride CAS号: 24304-00-5 EINECS号: 246-140-8 分子式: AlN 分子量 更多 山东西亚化学有限公司现货供应产品名: 氮化铝

购买

询盘CAS: 24304-00-5产地: 山东包装: 100g,25g,500g,1kg,100g,25g,500g,1kg,250g规格: ≥99.0%,50nm|≥99.0%,50nm|≥99.0%,50nm|≥99.5% metals basis,2.0μm|≥99.9% metals basis,50nm|≥99.9% metals价格: 795.00,271.00,2735.00,956.00,533.00,141.00,1695.00,835.00,285.00库存: 现货电话: 400-990-3999手机: 13395399280电子邮件: 861669111@qq.comQQ: 1903368307 微信: 13355009207 广东翁江化学试剂有限公司产品名: 氮化铝

询盘CAS: 24304-00-5产地: 广东包装: 500g, 25kg手机: 13927877242电子邮件: 3007432262@qq.comQQ: 3007432262 微信: 13927877242产品描述: 广东翁江厂家直供,产品齐全,量大价优,店铺所展示的目录只是我司部分产品,欲知更多产品信息欢迎微信咨询,或电联:朱小姐13927877242 浙江杭宇医药科技有限公司产品名: 氮化铝

询盘CAS: 24304-00-5产地: 浙江电话: 18134193529手机: 18134193529电子邮件: 18134193529@163.com微信: 18134193529 上海麦克林生化科技股份有限公司提供多种规格现货供应产品名: 氮化铝

购买

询盘CAS: 24304-00-5产地: 上海包装: 1kg价格: 897库存: 现货电话: 13918391375/17821173903手机: 13918391375/17821173903电子邮件: wangrui@macklin.cnQQ: 2853951919 微信: 13918391375/17821173903 乐研试剂产品名: 氮化铝,99.5% metals basis,2.0μm

购买

询盘CAS: 24304-00-5产地: 上海价格: 电联,邮件电话: 021-20772923*1172 (24小时)手机: 400-821-0725电子邮件: chenyiming@leyan.comQQ: 1823703538 产品描述: 乐研试剂:7万+现货 500+研发人员 当天发货免运费,涵盖分子砌块/医药中间体/催化剂与配体等,一站式定制合成服务 www.leyan.com 上海源叶生物科技有限公司现货供应产品名: 氮化铝

购买

询盘CAS: 24304-00-5产地: 上海规格: 99.5% metals basis,2.0μm价格: 50g 72,250g 252库存: 现货电话: 18301782025手机: 18301782025电子邮件: 3008007403@qq.comQQ: 3008007403 微信: 18301782025产品描述: 氮化铝 99.5% metals basis,2.0μm 源叶 货号:S44988 宁波保税区菲立化学有限公司产品名: 氮化铝

询盘CAS: 24304-00-5产地: 其他电话: 400-0388-898电子邮件: frappschem@163.com产品描述: 是良好的耐热冲击材料,是熔铸纯铁、铝或铝合金理想的坩埚材料

武汉兴众诚科技有限公司现货供应产品名: 氮化铝

询盘CAS: 24304-00-5产地: 湖北包装: 25KG/桶价格: 电联库存: 现货电话: 027-83389957手机: 18627766980电子邮件: 1024042217@qq.comQQ: 1024042217 微信: 18627766980产品描述: 氮化铝 氮化铝 英文名称: Aluminum nitride CAS号: 24304-00-5 EINECS号: 246-140-8 分子式: AlN 分子量 更多 山东西亚化学有限公司现货供应产品名: 氮化铝

购买

询盘CAS: 24304-00-5产地: 山东包装: 100g,25g,500g,1kg,100g,25g,500g,1kg,250g规格: ≥99.0%,50nm|≥99.0%,50nm|≥99.0%,50nm|≥99.5% metals basis,2.0μm|≥99.9% metals basis,50nm|≥99.9% metals价格: 795.00,271.00,2735.00,956.00,533.00,141.00,1695.00,835.00,285.00库存: 现货电话: 400-990-3999手机: 13395399280电子邮件: 861669111@qq.comQQ: 1903368307 微信: 13355009207 广东翁江化学试剂有限公司产品名: 氮化铝

询盘CAS: 24304-00-5产地: 广东包装: 500g, 25kg手机: 13927877242电子邮件: 3007432262@qq.comQQ: 3007432262 微信: 13927877242产品描述: 广东翁江厂家直供,产品齐全,量大价优,店铺所展示的目录只是我司部分产品,欲知更多产品信息欢迎微信咨询,或电联:朱小姐13927877242 浙江杭宇医药科技有限公司产品名: 氮化铝

询盘CAS: 24304-00-5产地: 浙江电话: 18134193529手机: 18134193529电子邮件: 18134193529@163.com微信: 18134193529 上海麦克林生化科技股份有限公司提供多种规格现货供应产品名: 氮化铝

购买

询盘CAS: 24304-00-5产地: 上海包装: 1kg价格: 897库存: 现货电话: 13918391375/17821173903手机: 13918391375/17821173903电子邮件: wangrui@macklin.cnQQ: 2853951919 微信: 13918391375/17821173903 乐研试剂产品名: 氮化铝,99.5% metals basis,2.0μm

购买

询盘CAS: 24304-00-5产地: 上海价格: 电联,邮件电话: 021-20772923*1172 (24小时)手机: 400-821-0725电子邮件: chenyiming@leyan.comQQ: 1823703538 产品描述: 乐研试剂:7万+现货 500+研发人员 当天发货免运费,涵盖分子砌块/医药中间体/催化剂与配体等,一站式定制合成服务 www.leyan.com 上海源叶生物科技有限公司现货供应产品名: 氮化铝

购买

询盘CAS: 24304-00-5产地: 上海规格: 99.5% metals basis,2.0μm价格: 50g 72,250g 252库存: 现货电话: 18301782025手机: 18301782025电子邮件: 3008007403@qq.comQQ: 3008007403 微信: 18301782025产品描述: 氮化铝 99.5% metals basis,2.0μm 源叶 货号:S44988 宁波保税区菲立化学有限公司产品名: 氮化铝

询盘CAS: 24304-00-5产地: 其他电话: 400-0388-898电子邮件: frappschem@163.com产品描述: 是良好的耐热冲击材料,是熔铸纯铁、铝或铝合金理想的坩埚材料

氮化铝的上游原料

氮(高纯) 炭黑 氧化铝

您刚刚浏览过

氮化铝

你知道吗?

点击右上角的地图标志可以切换至英文页面

使用化工百科前必读

首页

注册

登录

会员介绍

联系方式

化工百科英文站

金属知识,氮化铝 - 知乎

金属知识,氮化铝 - 知乎切换模式写文章登录/注册金属知识,氮化铝洛阳晶顺铜业专注做铜,诚信经营随着集成电路成为了国家战略性产业,除碳化硅以外,很多半导体材料得以被研究开发,氮化铝无疑是其中最具有发展前景的半导体材料之一。在离将于2021年8月在河南郑州举办“2021第四届新型陶瓷技术与产业高峰论坛”不足4个月之际,中国粉体网开启了“粉体行业巡回调研”行动。在走访过程中,我们了解到众多企业都意识到氮化铝是一个研究热点,也将是一个市场热点,所以部分企业对此早有部署。今天我们就来了解一下氮化铝蕴藏着怎样的魅力。一、氮化铝的研究历史氮化铝是一种综合性能优良的陶瓷材料,对其研究可以追溯到一百多年前,它是由F.Birgeler和A.Geuhter在1862年发现的,并于1877年由J.W.MalletS首次合成了氮化铝,但在随后的100多年并没有什么实际应用,当时仅将其作为一种固氮剂用作化肥。由于氮化铝是共价化合物,自扩散系数小,熔点高,导致其难以烧结,直到20世纪50年代,人们才首次成功制得氮化铝陶瓷,并作为耐火材料应用于纯铁、铝以及铝合金的熔炼。自20世纪70年代以来,随着研究的不断深入,氮化铝的制备工艺日趋成熟,其应用范围也不断扩大。尤其是进入21世纪以来,随着微电子技术的飞速发展,电子整机和电子元器件正朝微型化、轻型化、集成化,以及高可靠性和大功率输出等方向发展,越来越复杂的器件对基片和封装材料的散热提出了更高要求,进一步促进了氮化铝产业的蓬勃发展。二、氮化铝特征1、结构特征氮化铝(AlN)是一种六方纤锌矿结构的共价键化合物,晶格参数为a=3.114,c=4.986。纯氮化铝呈蓝白色,通常为灰色或灰白色,是典型的III-Ⅴ族宽禁带半导体材料。2、性能特征氮化铝(AlN)具有高强度、高体积电阻率、高绝缘耐压、热膨胀系数、与硅匹配好等特性,不但用作结构陶瓷的烧结助剂或增强相,尤其是在近年来大火的陶瓷电子基板和封装材料领域,其性能远超氧化铝。3、性能参数表:氮化铝主要性能参数由以上数据可以看到,与其它几种陶瓷材料相比较,氮化铝陶瓷综合性能优良,非常适用于半导体基片和结构封装材料,在电子工业中的应用潜力非常巨大。三、氮化铝的导热机理在氮化铝一系列重要的性质中,最为显著的是高的热导率。关于氮化铝的导热机理,国内外已做了大量的研究,并已形成了较为完善的理论体系。主要机理为:通过点阵或晶格振动,即借助晶格波或热波进行热的传递。量子力学的研究结果告诉我们,晶格波可以作为一种粒子——声子的运动来处理。热波同样具有波粒二象性。载热声子通过结构基元(原子、离子或分子)间进行相互制约、相互协调的振动来实现热的传递。如果晶体为具有完全理想结构的非弹性体,则热可以自由的由晶体的热端不受任何干扰和散射向冷端传递,热导率可以达到很高的数值。其热导率主要由晶体缺陷和声子自身对声子散射控制。理论上AlN热导率可达320W·m-1·K-1,但由于AlN中的杂质和缺陷造成实际产品的热导率还不到200W·m-1·K-1。这主要是由于晶体内的结构基元都不可能有完全严格的均匀分布,总是存在稀疏稠密的不同区域,所以载流声子在传播过程中,总会受到干扰和散射。四、氮化铝粉体的制备工艺氮化铝粉体的制备工艺主要有直接氮化法和碳热还原法,此外还有自蔓延合成法、高能球磨法、原位自反应合成法、等离子化学合成法及化学气相沉淀法等。1、直接氮化法直接氮化法就是在高温的氮气气氛中,铝粉直接与氮气化合生成氮化铝粉体,其化学反应式为2Al(s)+N2(g)→2AlN(s),反应温度在800℃-1200℃。其优点是工艺简单,成本较低,适合工业大规模生产。其缺点是铝粉表面有氮化物产生,导致氮气不能渗透,转化率低;反应速度快,反应过程难以控制;反应释放出的热量会导致粉体产生自烧结而形成团聚,从而使得粉体颗粒粗化,后期需要球磨粉碎,会掺入杂质。2、碳热还原法碳热还原法就是将混合均匀的Al2O3和C在N2气氛中加热,首先Al2O3被还原,所得产物Al再与N2反应生成AlN,其化学反应式为:Al2O3(s)+3C(s)+N2(g)→2AlN(s)+3CO(g)其优点是原料丰富,工艺简单;粉体纯度高,粒径小且分布均匀。其缺点是合成时间长,氮化温度较高,反应后还需对过量的碳进行除碳处理,导致生产成本较高。3、高能球磨法高能球磨法是指在氮气或氨气气氛下,利用球磨机的转动或振动,使硬质球对氧化铝或铝粉等原料进行强烈的撞击、研磨和搅拌,从而直接氮化生成氮化铝粉体的方法。其优点是:高能球磨法具有设备简单、工艺流程短、生产效率高等优点。其缺点是:氮化难以完全,且在球磨过程中容易引入杂质,导致粉体的质量较低。4、高温自蔓延合成法高温自蔓延合成法是直接氮化法的衍生方法,它是将Al粉在高压氮气中点燃后,利用Al和N2反应产生的热量使反应自动维持,直到反应完全,其化学反应式为:2Al(s)+N2(g)→2AlN(s)其优点是高温自蔓延合成法的本质与铝粉直接氮化法相同,但该法不需要在高温下对Al粉进行氮化,只需在开始时将其点燃,故能耗低、生产效率高、成本低。其缺点是要获得氮化完全的粉体,必需在较高的氮气压力下进行,直接影响了该法的工业化生产。5、原位自反应合成法原位自反应合成法的原理与直接氮化法的原理基本类同,以铝及其它金属形成的合金为原料,合金中其它金属先在高温下熔出,与氮气发生反应生成金属氮化物,继而金属Al取代氮化物的金属,生产AlN。其优点是工艺简单、原料丰富、反应温度低,合成粉体的氧杂质含量低。其缺点是金属杂质难以分离,导致其绝缘性能较低。6、等离子化学合成法等离子化学合成法是使用直流电弧等离子发生器或高频等离子发生器,将Al粉输送到等离子火焰区内,在火焰高温区内,粉末立即融化挥发,与氮离子迅速化合而成为AlN粉体。其优点是团聚少、粒径小。其缺点是该方法为非定态反应,只能小批量处理,难于实现工业化生产,且其氧含量高、所需设备复杂和反应不完全。7、化学气相沉淀法它是在远高于理论反应温度,使反应产物蒸气形成很高的过饱和蒸气压,导致其自动凝聚成晶核,而后聚集成颗粒。氮化铝的应用1、压电装置应用氮化铝具备高电阻率,高热导率(为Al2O3的8-10倍),与硅相近的低膨胀系数,是高温和高功率的电子器件的理想材料。2、电子封装基片材料常用的陶瓷基片材料有氧化铍、氧化铝、氮化铝等,其中氧化铝陶瓷基板的热导率低,热膨胀系数和硅不太匹配;氧化铍虽然有优良的性能,但其粉末有剧毒。在现有可作为基板材料使用的陶瓷材料中,氮化硅陶瓷抗弯强度最高,耐磨性好,是综合机械性能最好的陶瓷材料,同时其热膨胀系数最小。而氮化铝陶瓷具有高热导率、好的抗热冲击性、高温下依然拥有良好的力学性能。可以说,从性能的角度讲,氮化铝与氮化硅是目前最适合用作电子封装基片的材料,但他们也有个共同的问题就是价格过高。3、应用于发光材料氮化铝(AlN)的直接带隙禁带最大宽度为6.2eV,相对于间接带隙半导体有着更高的光电转换效率。AlN作为重要的蓝光和紫外发光材料,应用于紫外/深紫外发光二极管、紫外激光二极管以及紫外探测器等。此外,AlN可以和III族氮化物如GaN和InN形成连续的固溶体,其三元或四元合金可以实现其带隙从可见波段到深紫外波段的连续可调,使其成为重要的高性能发光材料。4、应用于衬底材料AlN晶体是GaN、AlGaN以及AlN外延材料的理想衬底。与蓝宝石或SiC衬底相比,AlN与GaN热匹配和化学兼容性更高、衬底与外延层之间的应力更小。因此,AlN晶体作为GaN外延衬底时可大幅度降低器件中的缺陷密度,提高器件的性能,在制备高温、高频、高功率电子器件方面有很好的应用前景。另外,用AlN晶体做高铝(Al)组份的AlGaN外延材料衬底还可以有效降低氮化物外延层中的缺陷密度,极大地提高氮化物半导体器件的性能和使用寿命。基于AlGaN的高质量日盲探测器已经获得成功应用。5、应用于陶瓷及耐火材料氮化铝可应用于结构陶瓷的烧结,制备出来的氮化铝陶瓷,不仅机械性能好,抗折强度高于Al2O3和BeO陶瓷,硬度高,还耐高温耐腐蚀。利用AlN陶瓷耐热耐侵蚀性,可用于制作坩埚、Al蒸发皿等高温耐蚀部件。此外,纯净的AlN陶瓷为无色透明晶体,具有优异的光学性能,可以用作透明陶瓷制造电子光学器件装备的高温红外窗口和整流罩的耐热涂层。6、复合材料环氧树脂/AlN复合材料作为封装材料,需要良好的导热散热能力,且这种要求愈发严苛。环氧树脂作为一种有着很好的化学性能和力学稳定性的高分子材料,它固化方便,收缩率低,但导热能力不高。通过将导热能力优异的AlN纳米颗粒添加到环氧树脂中,可有效提高材料的热导率和强度。五、现阶段存在的问题目前,氮化铝也存在一些问题。其一是粉体在潮湿的环境极易与水中羟基形成氢氧化铝,在AlN粉体表面形成氧化铝层,氧化铝晶格溶入大量的氧,降低其热导率,而且也改变其物化性能,给AlN粉体的应用带来困难。抑制AlN粉末的水解处理主要是借助化学键或物理吸附作用在AlN颗粒表面涂覆一种物质,使之与水隔离,从而避免其水解反应的发生。目前抑制水解处理的方法主要有:表面化学改性和表面物理包覆。其二是氮化铝的价格高居不下,每公斤上千元的价格也在一定程度上限制了它的应用。制备氮化铝粉末一般都需要较高的温度,从而导致生产制备过程中的能耗较高,同时存在安全风险,这也是一些高温制备方法无法实现工业化生产的主要弊端。再者是生产制备过程中的杂质掺入或者有害产物的生成问题,例如碳化还原反应过量碳粉的去除问题,以及化学气相沉积法的氯化氢副产物的去除问题,这都要求制备氮化铝的过程中需对反应产物进行提纯,这也导致了生产制备氮化铝的成本居高不下。(网络)发布于 2022-01-10 15:56金属金属材料氧化铝​赞同 4​​添加评论​分享​喜欢​收藏​申请

氮化铝:关键性能和应用 - 知乎

氮化铝:关键性能和应用 - 知乎切换模式写文章登录/注册氮化铝:关键性能和应用华林科纳半导体1.氮化铝的性质氮化铝的功能来自其 热、电和机械性能的组合。2.结构特性氮化铝的化学式为AlN。它是一种具有六方纤锌矿晶体结构的共价键合无机化合物。它的密度为 3.3 g/cm 3,摩尔质量为 40.99 g/mol。3.热性能·与大多数陶瓷相比,氮化铝具有非常高的 导热性。事实上,AlN 是所有陶瓷中导热率最高的材料之一,仅次于氧化铍。对于单晶AlN,这个值可以高达285 W/(m·K)。然而,对于多晶材料,70–210 W/(m·K) 范围内的值更常见。·氮化铝的高导热性是由于其低摩尔质量(40.99 g/mol,而氧化铝 Al2O3 为 101.96 g/mol)、强键合和相对简单的晶体结构。下面将氮化铝的更多特性与其他类似的技术陶瓷进行比较。· 氮化铝 在 20 °C 时的热膨胀系数为 4.8✕10 -6 1/K。这与硅(20°C 时为 3.5✕10 -6 1/K)非常相似,因此 AlN 通常用作硅加工的衬底材料。· 与在高温下使用相关的氮化铝的其他特性是高耐热冲击性和耐高温下熔融金属、化学品和等离子体的腐蚀。· 氮化铝的熔点为2200℃,沸点为2517℃。4.电气特性与其他陶瓷类似,AlN 具有非常高的电阻率,范围为 10-16 Ω·m。这使其成为电绝缘体。AlN还具有相对较高的介电常数,为8.8-8.9(纯AlN),与Al 2 O 3的介电常数相近,但远低于SiC。 AlN 的击穿电场为 1.2–1.8 x 10 6 V cm -1。 AlN 还显示压电性,这在薄膜应用中很有用。 5.机械性能AlN在20℃时的抗弯强度为350 MPa,与Al 2 O 3相同,略低于SiC。 与 200 GPa 范围内的钢相比,它具有 343 GPa 的高杨氏模量。该值仅低于Al 2 O 3的值。 AlN 在 20 °C 时还具有大约 1000 的高维氏硬度。 6.氮化铝与其他常见陶瓷的比较下面是一些流行的技术陶瓷的一些相关性能的比较表,包括氮化铝。7.氮化铝的应用半导体制造过程中存在的高温与制造中器件的敏感性相结合,使氮化铝特别适合用作衬底材料。其高导热性使其能够充当出色的散热器,同时保持电绝缘并且在高温下不会破裂。此外,它的热膨胀系数与硅非常相似。 在类似应用中,AlN 是氧化铍的常见替代品,因为它在加工时不会危害健康。 由于其在高温下的高耐腐蚀性,AlN 也被用作熔融金属的坩埚材料。 在薄膜形式下,AlN 有许多应用。由于其压电特性,它被用于表面声波 (SAW) 传感器。它还用于薄膜条形声波谐振器 (FBAR),这是一种用于手机射频滤波器的微机电系统 (MEMS) 器件。还在研究开发基于氮化镓铝的发光二极管。 8.AlN 的其他一些常见应用包括:·散热器·微波器件封装·熔融金属夹具·激光热管理组件·激光器用电绝缘元件·电子封装基板·用于微电子和光电器件的基板·微电子和光电器件的绝缘体·传感器和探测器的芯片载体·小芯片·夹头·硅晶片处理和加工·电绝缘体·半导体加工设备用卡盘和卡环·钢铁制造设备感兴趣可联系华林科纳官网获取更多相关文章发布于 2022-10-17 11:33氧化铝​赞同​​添加评论​分享​喜欢​收藏​申请

Page restricted | ScienceDirect

Page restricted | ScienceDirect

Your Browser is out of date.

Update your browser to view ScienceDirect.

View recommended browsers.

Request details:

Request ID: 8609640e49a60506-HKG

IP: 49.157.13.121

UTC time: 2024-03-07T08:59:41+00:00

Browser: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36

About ScienceDirect

Shopping cart

Contact and support

Terms and conditions

Privacy policy

Cookies are used by this site. By continuing you agree to the use of cookies.

Copyright © 2024 Elsevier B.V., its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the Creative Commons licensing terms apply.

氮化铝粉末制备方法及研究进展

氮化铝粉末制备方法及研究进展

中文核心期刊; 中国科技核心期刊; 中国科学引文数据库来源期刊

所有

Title

Author

Keyword

高级检索

首页

期刊介绍

期刊简介

出版伦理声明

编委会

期刊在线

最新录用

优先发表

当期目录

过刊浏览

下载排行

引用排行

高级检索

期刊动态

投稿指南

期刊订阅

联系我们

English

所有标题作者关键词摘要Doi栏目作者地址基金中图分类号

首页

期刊介绍

期刊简介

出版伦理声明

编委会

期刊在线

最新录用

优先发表

当期目录

过刊浏览

下载排行

引用排行

高级检索

期刊动态

投稿指南

期刊订阅

联系我们

English

氮化铝粉末制备方法及研究进展

张智睿, 

秦明礼, 

吴昊阳, 

刘昶, 

贾宝瑞, 

曲选辉

文章导航 > 粉末冶金技术

 >

2021 > 

39(4): 373-382

张智睿, 秦明礼, 吴昊阳, 刘昶, 贾宝瑞, 曲选辉. 氮化铝粉末制备方法及研究进展[J]. 粉末冶金技术, 2021, 39(4): 373-382. doi: 10.19591/j.cnki.cn11-1974/tf.2020070004

引用本文:

张智睿, 秦明礼, 吴昊阳, 刘昶, 贾宝瑞, 曲选辉. 氮化铝粉末制备方法及研究进展[J]. 粉末冶金技术, 2021, 39(4): 373-382. doi: 10.19591/j.cnki.cn11-1974/tf.2020070004

ZHANG Zhi-rui, QIN Ming-li, WU Hao-yang, LIU Chang, JIA Bao-rui, QU Xuan-hui. Research progress and preparation method of aluminum nitride powder[J]. Powder Metallurgy Technology, 2021, 39(4): 373-382. doi: 10.19591/j.cnki.cn11-1974/tf.2020070004

Citation:

ZHANG Zhi-rui, QIN Ming-li, WU Hao-yang, LIU Chang, JIA Bao-rui, QU Xuan-hui. Research progress and preparation method of aluminum nitride powder[J]. Powder Metallurgy Technology, 2021, 39(4): 373-382. doi: 10.19591/j.cnki.cn11-1974/tf.2020070004

张智睿, 秦明礼, 吴昊阳, 刘昶, 贾宝瑞, 曲选辉. 氮化铝粉末制备方法及研究进展[J]. 粉末冶金技术, 2021, 39(4): 373-382. doi: 10.19591/j.cnki.cn11-1974/tf.2020070004

引用本文:

张智睿, 秦明礼, 吴昊阳, 刘昶, 贾宝瑞, 曲选辉. 氮化铝粉末制备方法及研究进展[J]. 粉末冶金技术, 2021, 39(4): 373-382. doi: 10.19591/j.cnki.cn11-1974/tf.2020070004

ZHANG Zhi-rui, QIN Ming-li, WU Hao-yang, LIU Chang, JIA Bao-rui, QU Xuan-hui. Research progress and preparation method of aluminum nitride powder[J]. Powder Metallurgy Technology, 2021, 39(4): 373-382. doi: 10.19591/j.cnki.cn11-1974/tf.2020070004

Citation:

ZHANG Zhi-rui, QIN Ming-li, WU Hao-yang, LIU Chang, JIA Bao-rui, QU Xuan-hui. Research progress and preparation method of aluminum nitride powder[J]. Powder Metallurgy Technology, 2021, 39(4): 373-382. doi: 10.19591/j.cnki.cn11-1974/tf.2020070004

PDF下载

( 1648 KB)

氮化铝粉末制备方法及研究进展

doi: 10.19591/j.cnki.cn11-1974/tf.2020070004

张智睿, 

秦明礼, , 

吴昊阳, , 

刘昶, 

贾宝瑞, 

曲选辉

北京科技大学新材料技术研究院,北京 100083

基金项目: 国家自然科学基金资助项目(51774035);河北省省级科技计划资助项目(20311001D)

详细信息

通讯作者:

E-mail:qinml@mater.ustb.edu.cn(秦明礼)

wuhaoyang@ustb.edu.cn(吴昊阳)

中图分类号: TG142.71

计量

文章访问数: 

599

HTML全文浏览量: 

799

PDF下载量: 

173

被引次数: 0

出版历程

收稿日期: 

2020-07-15

网络出版日期: 

2021-07-23

刊出日期: 

2021-08-28

Research progress and preparation method of aluminum nitride powder

ZHANG Zhi-rui, 

QIN Ming-li, 

WU Hao-yang, 

LIU Chang, 

JIA Bao-rui, 

QU Xuan-hui

Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China

More Information

Corresponding author:

E-mail: qinml@mater.ustb.edu.cn (QIN M L); wuhaoyang@ustb.edu.cn (WU H Y)

摘要

HTML全文

图(10)

表(2)

参考文献(55)

相关文章

施引文献

资源附件(0)

访问统计

摘要

摘要:

氮化铝因高导热和绝缘性得到广泛应用,目前全球氮化铝应用市场处于高速成长期,对氮化铝的需求也在持续增长。氮化铝粉末是制备氮化铝陶瓷的关键原料,其性质对后续制备的氮化铝陶瓷性能有决定性影响。本文整理对比了微米级与纳米级氮化铝粉末的制备方法并对未来氮化铝粉末制备的研究方向和发展趋势提出了展望。

关键词:

氮化铝 / 

制粉工艺 / 

功能陶瓷 / 

纳米粉体 

Abstract:

Aluminum nitride has been widely applied for the high thermal conductivity and insulating properties. Nowadays, the global aluminum nitride application market is in the high growth stage as well as the demand for aluminum nitride is growing continuously. Aluminum nitride powders are the critical raw materials for the synthesis of aluminum nitride ceramics, and the properties of the aluminum nitride powders dominate the properties of the aluminum nitride ceramics. In the paper, the preparation methods of micrometer- and nanometer-sized aluminum nitride powders have been compared. Moreover, the future research directions and development trend of preparing aluminum nitride powders have been pointed out.

Key words:

aluminum nitride / 

powder synthesis process / 

functional ceramics / 

nanopowders 

HTML全文

图 

加入合金元素后得到蓬松AlN产物[15]

Figure 

1. 

Puffy AlN products containing the alloying elements[15]

下载:

全尺寸图片

幻灯片

图 

AlN颗粒透射电子显微形貌和电子能量损失谱[16]:(a)未加入碳的AlN颗粒显微形貌;(b)加入3%碳的AlN颗粒显微形貌;(c)未加入碳的AlN颗粒表面电子能量损失谱;(d)加入3%碳的AlN颗粒表面电子能量损失谱

Figure 

2. 

Transmission electron microscope (TEM) images and electron energy loss spectroscopy (EELS) of AlN powders[16]: (a) TEM images without carbon additive; (b) TEM images with 3% carbon additive by mass; (c) EELS spectra without carbon additive; (d) EELS spectra with 3% carbon additive by mass

下载:

全尺寸图片

幻灯片

图 

单个Al颗粒转化成多个细小AlN颗粒原理图[38]

Figure 

3. 

Sketch of the small AlN particle formation from the single Al particle[38]

下载:

全尺寸图片

幻灯片

图 

在空气中用自蔓延高温合成MgO和AlN分层结构[42]

Figure 

4. 

Stratification of MgO and AlN synthesized by combustion synthesis in air[42]

下载:

全尺寸图片

幻灯片

图 

等离子辅助球磨原理图(a)和放电图像(b)[31]

Figure 

5. 

Schematic representation of the dielectric barrier discharge plasma assisted ball milling (a) and the electrical discharge (b)[31]

下载:

全尺寸图片

幻灯片

图 

添加不同烧结助剂后碳热还原温度对AlN转化率的影响[46]

Figure 

6. 

Temperature dependence of AlN conversion rate with the different additive systems[46]

下载:

全尺寸图片

幻灯片

图 

溶液燃烧合成AlN前驱物和合成纳米AlN粉末显微形貌和元素分布:(a)AlN前驱物显微形貌[23];(b)~(d)AlN前驱物元素分布[23];(e)纳米AlN粉末显微形貌[8];(f)具有六边形结构AlN粉末显微形貌[13]

Figure 

7. 

Microstructure and element distribution of the AlN precursors and AlN powders prepared by solution combustion synthesis: (a) microstructure of the AlN precursors[23]; (b)~(d) element distribution of the AlN precursors[23]; (e) microstructure of the AlN powders[8]; (f) microstructure of the AlN powders with hexagonal structure[13]

下载:

全尺寸图片

幻灯片

图 

络合物分解法制备的粉末颗粒(a)[51]及分散后的纳米粉末(b)[52]

Figure 

8. 

Microstructure of the AlN powders (a)[51] and the AlN nanopowders after dispersion (b)[52] synthesized by complex decomposition

下载:

全尺寸图片

幻灯片

图 

具有特殊形貌的纳米AlN颗粒:(a)多孔AlN颗粒[27];(b)纳米AlN片[31]

Figure 

9. 

AlN powders with the special structure: (a) porous AlN particles[27]; (b) AlN nanosheet[31]

下载:

全尺寸图片

幻灯片

图 

10 

机械化学法制备纳米AlN显微形貌[32,53]

Figure 

10. 

Microstructure of the AlN nanopowders synthesized by mechanochemical reaction[32,53]

下载:

全尺寸图片

幻灯片

表 

混粉过程中所用的原料及配比(质量分数)[46]

Table 

1.

 

Raw materials and compositions used in the powder mixing process[46] %

试样编号CAl2O3CaF2Y2O3Li2OaSrOa

AP32.068.0————AC31.465.63.0———ACY30.464.63.02.00——ACL30.464.63.0—2.0—ACS30.464.63.0——2.00ACYL30.430.43.01.500.5—ACYLS30.430.43.00.750.50.75

注:a表示以碳酸盐形式添加

下载: 导出CSV

表 

制备纳米AlN粉末的方法及特点

Table 

2.

 

Methods and characteristics of the nanometer AlN powder preparation

方法特点

直接氮化法纯度不高,转化率较低湿化学法原材料经济易得,能耗低,混合均匀化学气相沉积法产物纯度较高,但结晶度不高高能物理辅助法反应伴随较强的机械、光、热、电磁效应机械化学法室温球磨,反应时间长,残余应力较高

下载: 导出CSV

参考文献(55)

[1]

Baik Y, Drew R A L. Aluminum nitride: Processing and applications. Key Eng Mater, 1996, 122-124: 553 doi: 10.4028/www.scientific.net/KEM.122-124.553

[2]

Loughin S, French R H, Ching W Y, et al. Electronic structure of aluminum nitride: Theory and experiment. Appl Phys Lett, 1993, 63(9): 1182 doi: 10.1063/1.109764

[3]

Yao Z Q, Li Y Q, Tang J X, et al. Growth and photoluminescence studies of AlN thin films with different orientation degrees. Diamond Relat Mater, 2008, 17(7-10): 1785 doi: 10.1016/j.diamond.2008.02.009

[4]

Baskut S, Cinar A, Turan S. Directional properties and microstructures of spark plasma sintered aluminum nitride containing graphene platelets. J Eur Ceram Soc, 2017, 37(12): 3759 doi: 10.1016/j.jeurceramsoc.2017.03.032

[5]

Enloe J H, Rice R W, Lau J W, et al. Microstructural effects on the thermal conductivity of polycrystalline aluminum nitride. J Am Ceram Soc, 1991, 74(9): 2214 doi: 10.1111/j.1151-2916.1991.tb08287.x

[6]

He Q, Qin M L, Huang M, et al. Synthesis of highly sinterable AlN nanopowders through sol-gel route by reduction-nitridation in ammonia. Ceram Int, 2019, 45(12): 14568 doi: 10.1016/j.ceramint.2019.04.174

[7]

Chu A M, Qin M L, Rafi-ud-din, et al. Effect of urea on the size and morphology of AlN nanoparticles synthesized from combustion synthesis precursors. J Alloys Compd, 2012, 530: 144 doi: 10.1016/j.jallcom.2011.12.133

[8]

Chu A M, Qin M L, Jia B R, et al. Effect of carbon source content on the carbothermal synthesis of AlN powders using a combustion synthesis precursor. Adv Mater Res, 2012, 554-556: 526 doi: 10.4028/www.scientific.net/AMR.554-556.526

[9]

Chu A M, Qin M L, Rafi-ud-din, et al. Effect of aluminum source on the synthesis of AlN powders from combustion synthesis precursors. Mater Res Bull, 2012, 47(9): 2475 doi: 10.1016/j.materresbull.2012.05.014

[10]

Wang L Y. Polymer network gel method for surperfine AlN powder preparation. Matec Web Conf, 2017, 109(6): 03006

[11]

Wang H P, Yang Q H, Jia G H, et al. Influence of yttrium dopant on the synthesis of ultrafine AlN powders by CRN route from a sol–gel low temperature combustion precursor. Adv Powder Technol, 2014, 25(1): 450 doi: 10.1016/j.apt.2013.07.008

[12]

Chu A M, Qin M L, Rafi-ud-din, et al. Citric acid-assisted combustion-carbothermal synthesis of well-distributed highly sinterable AlN nanopowders. J Am Ceram Soc, 2012, 95(8): 2510 doi: 10.1111/j.1551-2916.2012.05225.x

[13]

Wu H Y, Qin M L, Chu A M, et al. AlN powder synthesis by sodium fluoride-assisted carbothermal combustion. Ceram Int, 2014, 40(9): 14447 doi: 10.1016/j.ceramint.2014.07.014

[14]

Zhang D, Liu F M, Cai L G, et al. Formation of novel core–shell and tadpole-like structures in the direct nitridation of aluminum powder by N2 and NH3. J Alloys Compd, 2013, 547: 91 doi: 10.1016/j.jallcom.2012.08.031

[15]

Zhang Y H, Wang Q, Qu Z X, et al. Effect of additive Zn on the synthesis of AlN powders by direct nitridation. Rare Met Mater Eng, 2014, 43(7): 1727张耀辉, 王群, 瞿志学, 等. Zn元素对直接氮化法制备AlN粉体的影响. 稀有金属材料与工程, 2014, 43(7): 1727

[16]

Lee K B, Kim Y H, Choi H J, et al. Effect of carbon on the nitridation behavior of aluminum powder. J Alloys Compd, 2016, 689: 218 doi: 10.1016/j.jallcom.2016.07.109

[17]

Mackenzie M, Craven A J. Quantifying the oxidation of AlN using electron energy loss spectroscopy. J Phys D, 2000, 33(14): 1647 doi: 10.1088/0022-3727/33/14/303

[18]

Chung S L, Lai C H. Combustion synthesis of aluminum nitride: A review. Key Eng Mater, 2012, 521(11): 101

[19]

Lu H F. Study on Preparation and Injection Molding of Aluminum Nitride Powder [Dissertation]. Beijing: University of Science and Technology Beijing, 2020鲁慧峰. 氮化铝粉末制备及注射成形研究[学位论文]. 北京: 北京科技大学, 2020

[20]

Pee J H, Park J C, Hwang K T, et al. Properties of AlN powder synthesized by self-propagating high temperature synthesis process. Key Eng Mater, 2010, 434-435: 834 doi: 10.4028/www.scientific.net/KEM.434-435.834

[21]

Lin C N, Chung S L. Combustion synthesis method for synthesis of aluminum nitride powder using aluminum containers. J Mater Res, 2001, 16(12): 3518 doi: 10.1557/JMR.2001.0483

[22]

Liu Z J, Wang W C, Yang D Z, et al. Synthesis of nano-size AlN powders by carbothermal reduction from plasma-assisted ball milling precursor. Plasma Sci Technol, 2016, 18(7): 759 doi: 10.1088/1009-0630/18/7/10

[23]

He Q, Qin M L, Huang M, et al. Mechanism and kinetics of combustion-carbothermal synthesis of AlN nanopowders. Ceram Int, 2017, 43(12): 8755 doi: 10.1016/j.ceramint.2017.04.006

[24]

Hideaki C, Jun F, Yamato H, et al. Kinetics of microwave synthesis of AlN by carbothermal-reduction-nitridation at low temperature. J Am Ceram Soc, 2018, 101(11): 4905 doi: 10.1111/jace.15903

[25]

Kim J K, Jung W S. Nitridation of δ-alumina to aluminum nitride under a flow of ammonia and its mechanism. J Ceram Soc Jpn, 2011, 119(1389): 351 doi: 10.2109/jcersj2.119.351

[26]

Ognjanović S M, Winterer M. Optimizing particle characteristics of nanocrystalline aluminum nitride. Powder Technol, 2017, 326: 488

[27]

Pee J H, Park J C, Hwang K T, et al. Synthesis of an aluminum nitride–yttria (AlN–Y2O3) composite from nano-sized porous AlN and YCl3. Res Chem Intermed, 2010, 36(6-7): 801 doi: 10.1007/s11164-010-0184-8

[28]

Lee S H, Yi J H, Kim J H, et al. Preparation of nanometer AlN powders by combining spray pyrolysis with carbothermal reduction and nitridation. Ceram Int, 2011, 37(6): 1967 doi: 10.1016/j.ceramint.2011.03.052

[29]

Li L, Ni G H, Zhao Y J, et al. Synthesis of nano-AlN powders from Al wire by arc plasma at atmospheric pressure. Ceram Int, 2018, 44(17): 21810 doi: 10.1016/j.ceramint.2018.08.284

[30]

Gao X, Chen P W, Wang X G, et al. Production of AlN nanopowders by electrical wire explosion in liquid nitrogen. Mater Sci Forum, 2018, 910: 46 doi: 10.4028/www.scientific.net/MSF.910.46

[31]

Wang S, Wang W C, Yang D Z, et al. Direct synthesis of AlN nano powder by dielectric barrier discharge plasma assisted high-energy ball milling. J Mater Sci Mater Electron, 2016, 27(8): 8518 doi: 10.1007/s10854-016-4868-8

[32]

Caballero E S, Cintas J, Cuevas F G, et al. A new method for synthetizing nanocrystalline aluminium nitride via a solid-gas direct reaction. Powder Technol, 2016, 287: 341 doi: 10.1016/j.powtec.2015.10.023

[33]

Rounaghi S A, Kiani Rashid A R, Eshghi H, et al. Formation of nanocrystalline h-AlN during mechanochemical decomposition of melamine in the presence of metallic aluminum. J Solid State Chem, 2012, 190: 8 doi: 10.1016/j.jssc.2012.01.005

[34]

Rounaghi S A, Eshghi H, Kiani Rashid A R, et al. Synthesis of nanostructured AlN by solid state reaction of Al and diaminomaleonitrile. J Solid State Chem, 2013, 198: 542 doi: 10.1016/j.jssc.2012.11.018

[35]

Borovinskaya I P, Merzhanov A G, Novikov N P, et al. Gasless combustion of mixtures of powder transition metals with boron. Combust Explos Shock Waves, 1974, 10(1): 2 doi: 10.1007/BF01463777

[36]

Merzhanov A G, Karyuk G G, Borovinskaya I P, et al. Titanium carbide produced by self-propagating high-temperature synthesis-Valuable abrasive material. Sov Powder Metall Met Ceram, 1981, 20(10): 709 doi: 10.1007/BF00791050

[37]

Shim G, Park J S, Cho S W. Combustion synthesis of AlN with melamine as an additive. J Mater Res, 2006, 21(3): 747 doi: 10.1557/jmr.2006.0093

[38]

Qiao L, Chen S W, Zheng J W, et al. Preparation and formation mechanism of aluminum nitride ceramic particles from large aluminum powder by self-propagating high temperature synthesis. Adv Powder Technol, 2015, 26(3): 830 doi: 10.1016/j.apt.2015.02.007

[39]

Sun S Y, Ge Y Y, Wang Q, et al. Combustion synthesis of fine aluminum nitride powders under micropositive N2 pressure with water additive. J Am Ceram Soc, 2019, 102(3): 914

[40]

Hiranaka A, Yi X M, Saito G, et al. Effects of Al particle size and nitrogen pressure on AlN combustion synthesis. Ceram Int, 2017, 43(13): 9872 doi: 10.1016/j.ceramint.2017.04.170

[41]

Liu J P, Zhang H. Effects of NH4Cl on the synthesis of aluminum nitride by the spontaneous combustion of mechanically activated aluminium powder. Electron Compon Mater, 2011, 30(1): 8 doi: 10.3969/j.issn.1001-2028.2011.01.003刘建平, 张晖. NH4Cl对机械活化Al粉燃烧合成AlN的控制. 电子元件与材料, 2011, 30(1): 8 doi: 10.3969/j.issn.1001-2028.2011.01.003

[42]

Xie X, Sui Y, Huang X Y, et al. Synthesis of AlN by direct combustion of Mg‒Al alloy powder. J Inorg Mater, 2019, 34(4): 439 doi: 10.15541/jim20180244谢晓, 隋颖, 黄晓昱, 等. 镁铝合金直接燃烧法合成AlN晶体. 无机材料学报, 2019, 34(4): 439 doi: 10.15541/jim20180244

[43]

Hirai S, Miwa T, Iwata T, et al. Formation of AlN by carbothermic reduction of Al2O3 in a flowing N2 atmosphere. J Jpn Inst Met, 1989, 53: 1035 doi: 10.2320/jinstmet1952.53.10_1035

[44]

Jung W S. Conversion of alumina to aluminum nitride using polymeric carbon nitride as a nitridation reagent. J Am Ceram Soc, 2016, 99(5): 1520 doi: 10.1111/jace.14152

[45]

Jung W S. Effect of NiS addition on nitridation of alumina to aluminum nitride using polymeric carbon nitride as a nitridation reagent. Ceram Int, 2016, 42(13): 14716 doi: 10.1016/j.ceramint.2016.06.097

[46]

André L M, Yoshimura H N. Low-temperature synthesis of AlN powder with multicomponent additive systems by carbothermal reduction–nitridation method. Mater Res Bull, 2010, 45(6): 733 doi: 10.1016/j.materresbull.2010.02.012

[47]

Yan G N, Deng X Y, Lin J Z. The research of high-thermal-conductive aluminum nitride substrate in airport power electronics. Printed Circuit Inf, 2017, 25(10): 32 doi: 10.3969/j.issn.1009-0096.2017.10.006严光能, 邓先友, 林金堵. 高导热氮化铝基板在航空工业的应用研究. 印制电路信息, 2017, 25(10): 32 doi: 10.3969/j.issn.1009-0096.2017.10.006

[48]

Dehkordi E N, Samim Banihashemi H R, Naghizadeh R, et al. Synthesis of aluminum nitride in a coke-calcium reduction bed using nitrogen in air. Int J Miner Metall Mater, 2015, 22(9): 972 doi: 10.1007/s12613-015-1157-0

[49]

Zheng S Y, Chen J, Pan W. Compositing by wet-chemical method and its application. Mater Rev, 2000, 14(9): 25 doi: 10.3321/j.issn:1005-023X.2000.09.009郑仕远, 陈健, 潘伟. 湿化学方法合成及应用. 材料导报, 2000, 14(9): 25 doi: 10.3321/j.issn:1005-023X.2000.09.009

[50]

Wei Y N, Wei H Y, Zhao D M, et al. Synthesis of aluminum nitride ultrafine powder via carbon thermal reduction nitridation process based on non-hydrolytic sol‒gel method. J Funct Mater, 2013, 44(17): 2546 doi: 10.3969/j.issn.1001-9731.2013.17.025魏颖娜, 魏恒勇, 赵冬梅, 等. 基于非水解sol‒gel法的碳热还原氮化合成氮化铝超细粉体. 功能材料, 2013, 44(17): 2546 doi: 10.3969/j.issn.1001-9731.2013.17.025

[51]

Cheng Y L, Huang X, Xi X, et al. The effect of the urea content on the properties of nano-size AlN powders synthesized by a wet chemical method. Ceram Int, 2018, 44(5): 5774 doi: 10.1016/j.ceramint.2017.11.146

[52]

Li Z X, Hao L C, Zhang J F, et al. Preparation of aluminum nitride nanomaterials by precursor method. J Chin Ceram Soc, 2020, 48(6): 787李紫璇, 郝留成, 张建飞, 等. 前驱体法合成氮化铝纳米材料及其生长机制. 硅酸盐学报, 2020, 48(6): 787

[53]

Rounaghi S A, Vanpoucke D E P, Eshghi H, et al. A combined experimental and theoretical investigation of the Al-Melamine reactive milling system: A mechanistic study towards AlN-based ceramics. J Alloys Compd, 2017, 729: 240 doi: 10.1016/j.jallcom.2017.09.168

[54]

Zhang W, Li Z, Zhang D. Synthesizing AlN powder by mechanochemical reaction between aluminum and melamine. J Mater Res, 2010, 25(3): 464 doi: 10.1557/JMR.2010.0076

[55]

Liu Z J, Wang W C, Yang D Z, et al. In situ synthesis of AlN nanoparticles by solid state reaction from plasma assisted ball milling Al and diaminomaleonitrile mixture. Ceram Int, 2015, 42(2): 3411

相关文章

施引文献

资源附件(0)

访问统计

PDF下载

( 1648 KB)

XML下载

导出引用

Turn off MathJax

点击查看大图

图(10) / 表(2)

计量

文章访问数: 

599

HTML全文浏览量: 

799

PDF下载量: 

173

被引次数: 0

出版历程

收稿日期: 

2020-07-15

网络出版日期: 

2021-07-23

刊出日期: 

2021-08-28

目录

×Close

导出文件

文件类别

RIS(可直接使用Endnote编辑器进行编辑)

Bib(可直接使用Latex编辑器进行编辑)

Txt

引用内容

引文——仅导出文章的Citation信息

引文和摘要——导出文章的Citation信息和文章摘要信息

导出

关闭

/

下载: 

全尺寸图片 幻灯片

返回文章

分享

用微信扫码二维码

分享至好友和朋友圈

返回

版权所有 《粉末冶金技术》编辑部京ICP备13030111号

本系统由

北京仁和汇智信息技术有限公司开发 

 

超宽禁带AlN材料及其器件应用的现状和发展趋势_晶体

超宽禁带AlN材料及其器件应用的现状和发展趋势_晶体

新闻

体育

汽车

房产

旅游

教育

时尚

科技

财经

娱乐

更多

母婴

健康

历史

军事

美食

文化

星座

专题

游戏

搞笑

动漫

宠物

无障碍

关怀版

超宽禁带AlN材料及其器件应用的现状和发展趋势

2020-07-09 00:00

来源:

MEMS

原标题:超宽禁带AlN材料及其器件应用的现状和发展趋势

本文内容转载自《半导体技术》2019年第4期,版权归《半导体技术》编辑部所有。

何君,李明月

中国电子科技集团公司第十三研究所

摘要:作为一种Ⅲ-Ⅴ族化合物半导体材料,AlN不仅具有超宽直接带隙(6.2 eV)、高热导率、高电阻率、高击穿场强、优异的压电性能和良好的光学性能,而且AlN晶体还与其他Ⅲ-N材料具有非常接近的晶格常数和热膨胀系数。这些特点决定了AlN在GaN外延、紫外光源、辐射探测器、微波毫米波器件、光电器件、电力电子器件以及声表面波器件等领域具有广阔的应用前景。介绍了AlN材料在功率器件、深紫外LED、激光器、传感器以及滤波器等领域的应用现状,并对AlN材料及其应用的未来发展趋势进行了分析和展望。

关键词:AlN;超宽禁带;光电器件;电力电子器件;声表面波(SAW)器件

0 引言

AlN材料具有很高的直接带隙(6.2 eV),是重要的蓝光和紫外发光材料;AlN介电常数小,具有良好热导率、高电阻率和击穿场强,是优异的高温、高频和大功率器件材料;沿c轴取向的AlN具有良好的压电性和极高的声表面波(SAW)传输速度,是极佳的SAW器件用压电材料。AlN晶体与其他Ⅲ-N材料具有非常接近的晶格常数和热膨胀系数,与蓝宝石或SiC衬底相比,AlN与AlGaN的晶格常数匹配、热匹配及化学兼容性更高,作为AlGaN器件外延衬底时可大幅度降低器件中的缺陷密度。AlN的这些优良性能使其在众多领域中具有广阔的应用前景,成为目前国际研究的热点。近年来,国际上对AlN研究的热点主要包括以下几个方面:① AlN外延及制备技术;② AlN基器件衬底技术;③ AlN接触和掺杂层技术;④ 深紫外(DUV)电子器件应用的AlN功能层特性;⑤ AlN深紫外LED和传感器技术;⑥ AlN深紫外激光器及其应用;⑦ 使用AlN材料的电子器件技术(HEMT、功率器件和高频器件)⑧ AlN材料的新应用(压电器件、太赫兹器件、高温电子器件等)。

本文主要介绍了AlN材料的制备技术以及在功率器件、光电器件、电力电子器件、传感器以及滤波器等领域的应用现状,并对AlN材料及其器件应用的未来发展趋势进行了分析和展望。

1 AlN的制备方法

AlN单晶的制备方法主要包括分子束外延(MBE)、氢化物气相外延(HVPE)、金属有机化合物气相淀积(MOCVD)和物理气相传输(PVT)法等。其中HVPE、MOCVD和MBE法多用来制备薄膜,HVPE生长速度快(100 μm/h),几乎是MOCVD和MBE法的100倍,适合制作较厚的AlN薄膜。PVT技术的基本原理为高温区AlN源的分解升华,通过温度梯度驱动至籽晶表面重新凝华成晶体,其生长速度比HVPE更快、晶体质量更高,是目前制备大尺寸、高质量AlN体单晶最有前景的方法之一,也是目前的国际研究热点。

目前美国Crystal IS公司和俄罗斯的Nitride Crystals公司掌握了PVT法制备AlN晶体的核心技术,在该领域处于领先地位,2012年已制备出直径大于2英寸(1英寸 = 2.54 cm)的AlN体单晶。使用PVT法进行材料制备主要有3个研究方向:籽晶自发成核技术;同质外延自发成核技术;SiC衬底上的异质外延引晶技术。自发成核技术获得的AlN晶体质量相对较高,生长速度较快,但无法实现大尺寸晶体;同质外延成核技术是AlN晶体生长的最终目标,然而大尺寸高质量晶体难以实现。随着4英寸SiC晶圆实现大规模商品化,外延引晶技术无疑成为快速实现大尺寸AlN衬底最直接有效的方法,然而该方法生长出来的AlN晶体杂质、位错和微管缺陷偏高,可采用SiC / AlN复合籽晶生长技术制备出大尺寸AlN晶体。

展开全文

2018年,美国的I. Demir等人报道了一种采用MOCVD法制备的“三明治”结构高质量AlN,这种较厚的(2 μm)无断裂AlN材料制作在c平面蓝宝石衬底上,“三明治”结构是在两个较高温度(1170 °C)生长的250 nm厚的AlN层中夹有一层较低温度(1050 ℃)生长的1500 nm厚的AlN层,这种结构使晶体质量和晶体表面形貌得到明显改观,5 μm × 5 μm面积的均方根粗糙度为0.71 nm。

与MOCVD和MBE法相比,HVPE法生长速度快,是一种具有发展前景的AlN薄膜制备技术,但其生长效率低、成本高。2016年,俄罗斯的V. N. Bessolov等人报道了采用氯化物HVPE技术在SiC / Si衬底上制作无应变(约为0.02 GPa)AlN薄膜层的方法,配合新型外延横向过生长(ELO)技术和悬空外延片技术制作出20 μm厚的AlN外延薄膜,生长温度为1080 ℃,生长速率为0.2 μm/min。

2016年,中国科学院物理研究所的胡伟杰等人采用PVT法制备了1英寸AlN单晶并对p型掺杂进行了研究。徐永宽等人和郝建民报道了在碳基单晶生长系统中采用SiC籽晶和在钨材质单晶生长系统中自发成核PVT法制备大尺寸AlN单晶及抛光片,为AlGaN器件使用AlN同质衬底提供了可能性。

2 AlN在器件中的应用

AlN主要用于微波毫米波器件、SAW器件、紫外/深紫外LED以及电力电子器件。其中AlN紫外LED的输出功率已达到实用化需求,紫外/深紫外探测器仍在研制阶段,中功率吉赫兹级通信用HEMT和SAW/体声波(BAW)压电器件正步入实用化阶段。此外,AlN大功率电力电子器件进入快速发展期,新型AlN器件如MEMS器件、太赫兹器件、高温器件等处于不断探索和开发中。

2.1 微波毫米波器件

AlN在微波毫米波器件已有广泛应用,如使用AlN缓冲层可使GaN / Si器件的电子迁移率比使用SiC或蓝宝石缓冲层提高1~3倍;AlN成核层是在Si基底上外延生长Ⅲ-N材料的重要步骤;薄AlN势垒层可有效解决GaN器件由于势垒下降所引起的二维电子气(2DEG)密度下降问题;高Al组分Al x Ga 1-x N(x > 0.5) / AlN的击穿电压是GaN的3倍,热导率是蓝宝石的6倍、GaN的1~2倍,是理想的沟道层材料;AlN衬底与蓝宝石或SiC衬底相比可使GaN器件的位错密度从10 8 cm -2 下降到10 5 cm -2 数量级,在AlN衬底上生长高Al组分AlGaN薄膜具有更低的位错密度和自补偿特性,因而展现出极高峰值导电性、载流子浓度和迁移率,将成为替代蓝宝石或SiC的重要衬底材料。

2.1.1 HEMT器件

AlN通常用于HEMT器件的缓冲层和势垒层,可使器件实现更高的输出功率、截止频率、抗辐射能力以及耐恶劣环境特性,是宽禁带氮化物半导体和微电子领域的前沿技术。

2018年,美国桑迪亚实验室报道了高Al组分(85%)AlN / Al 0.85 Ga 0.15 N HEMT,其结构如图1所示,研究人员使用AlN势垒刻蚀去除和再生长工艺形成欧姆接触,2DEG电阻率接近4200 Ω/□,击穿电压高达810 V,具有极佳的栅漏电流,开关电流比(I on / I off > 10 7 )和 亚阈值斜率(75 mV/dec)。2017年,S. Muhtadi等人对蓝宝石衬底上3 μm厚的低缺陷AlN缓冲层Al 0.85 Ga 0.15 N/ Al 0.65 Ga 0.35 N HEMT器件进行了研究,证明AlN缓冲层可提供足够高的热导率,当源—漏间距为5.5 μm、栅长为1.8 μm时,器件在栅偏压为4 V时的峰值漏电流高达250 mA/mm,器件可在40 V和250 mA/mm条件下稳定工作,没有出现电流崩塌现象。2017年,德国弗劳恩霍夫研究所的B. J. Godejohann等人分别采用MBE和MOCVD法制作了AlN / GaNHEMT,并对两种方法进行了对比:采用蓝宝石衬底MBE法生长出陡峭界面和纯AlN势垒层,Si衬底MOCVD生长的AlN纯度不如MBE法,器件的最高漏电流约为1.46 A/mm,栅源电压为3 V,截止频率为89 GHz,薄膜电阻小于200 Ω/□,在100 nm栅长下AlN / GaN HEMT器件实现了极佳的高频和小信号特性。2018年,土耳其的I. K. Durukan等人推出了两种采用MOCVD法生长的不同AlN缓冲层厚度(260 nm和520 nm)的蓝宝石衬底AlGaN / AlN / GaN异质结构HEMT,并对两种结果进行了对比,通过X射线衍射(XRD)和原子力显微镜(AFM)进行研究,其结果表明,使用260 nm厚缓冲层的器件具有更多的凹坑和突起,粗糙度更高。同年,印度的P.Murugapandiyan等人报道了一种新型T型栅20 nm增强模式Al 0.5 Ga 0.5 N / AlN / GaN HEMT,器件采用重掺杂源—漏区和Al 2 O 3 钝化层,截止频率(f t )和最高振荡频率(f max )分别为325 GHz和553 GHz,采用2 nm厚的AlN势垒层使峰值漏电流密度达到3 A/mm,约翰逊优值为8.775 THz,其良好特性使其成为下一代大功率毫米波RF应用的单片微波集成电路最合适的候选技术。

图1 高Al组分AlN / AlGaN HEMT结构示意图

2018年,张力江等人在SiC衬底上制备低缺陷AlN缓冲层,研制了一款L波段350 W AlGaN / GaN HEMT大功率器件,器件增益大于13 dB,效率高达81%。可靠性试验结果表明,器件抗失配能力达到10∶1。

2.1.2 FET器件

AlN通常用于FET器件的缓冲层、绝缘层、势垒层和衬底,AlN / GaN异质结FET具有很高的2DEG面密度和电子迁移率,传输特性优良,在电力电子器件和射频器件领域有着非常广阔的应用前景。髙温应用也是AlN异质结FET的重要优势之一。

2016年,日本的N. Kurose等人报道了一种Si衬底上通过形成纳米尺寸自发通孔成功制作的导电AlN缓冲层垂直型AlGaN FET,通过在通孔中填充导电n - AlGaN使AlN的垂直导电率提高了1000倍,通过这种导电通孔AlN技术成功设计出350 nm垂直型UV - LED和垂直型UV传感器,193 nm时的响应度达到150 mA/W。同年,日本的R. G. Banal等人报道了一种采用AlN绝缘层的AlN / Al 2 O 3 堆叠栅H终端金刚石金属—绝缘体—半导体场效应晶体管(MISFET),5 nm厚的Al 2 O 3 层和175 nm厚的AlN膜分别采用原子层淀积和溅射淀积技术完成,MISFET的最大漏—源电流、阈值电压以及最大非本征跨导分别为-8.89 mA/mm,-0.22 V以及6.83 mS/mm。

2016年,S. Bajaj等人报道了一种在蓝宝石上AlN衬底上制作的超宽带隙Al 0.75 Ga 0.25 N沟道MISFET,采用梯度极化接触技术和凹槽栅结构,栅介质为原子层沉积的Al 2 O 3 ,器件结构如图2所示。高组分沟道比接触电阻率低至1 × 10 -6 Ω · cm 2 ,该项研究工作使得超宽带隙AlGaN基器件广泛应用于电子器件和光电器件。

图2 Al 0.75 Ga 0.25 N沟道MISFET结构图

2017年,美国康奈尔大学和圣母大学联合推出在单晶AlN衬底上采用MBE法外延无应变GaN量子阱AlN / GaN FET,AlN / GaN / AlN量子阱双异质结构使该类器件获得了最高迁移率(601 cm 2 · V -1 · s -1 )和 最低薄膜电阻(327 Ω/□),2DEG密度大于2×10 13 / cm 2 。栅长为65 nm,器件的DC漏极电流高达2.0 A/mm并创下当时最高记录,非本征跨导峰值为250 mS/mm,电流截止频率约为120 GHz,通过采用宽带隙厚AlN势垒层使FET的击穿特性和热处理能力得到极大改善,为未来实现高压和大功率微波应变量子阱氮化物晶体管提供了技术基础。

2.2 光电子器件

光电子器件领域是AlN发展最为成熟的领域之一,AlN衬底较低的位错密度(典型值为10 5 cm -2 )已被证实优于Si、SiC和蓝宝石衬底器件,可极大地提高深紫外发光二极管、激光器和探测器的发光效率。目前已有采用AlN衬底的深紫外LED产品的销售,而AlN激光二极管(LD)和雪崩光电二极管(APD)探测器尚未进入实用化。通过使用AlN晶体衬底可使发光波长从UVA(400~320 nm)、UVB(320~280 nm) 扩展到UVC(280~200 nm),使用Mg掺杂AlN纳米线阵列可有效改善材料的导电性,可实现高效深紫外光电器件。

2.2.1 LED

大多数AlN UV - LED异质结构生长在c平面蓝宝石衬底上,如图3所示。一般采用MOCVD生长技术,典型生长温度为1000~1200 ℃,有时可达1500 ℃,广泛应用于照明、医疗、水资源净化等领域,具有巨大的经济价值,但存在外部量子效率低(小于10%)等缺陷。

图3 使用AlN缓冲层的深紫外LED的典型外延结构图

2017年,日本信息通信研究机构的S. I. Inoue等人报道了深紫外AlGaN基LED在波长265 nm、输出功率大于150 mW下,采用大面积纳米图形结构制作LED,使光提取效率提高了3倍,可满足实用化需求,为深紫外AlGaN基LED大规模应用奠定了基础。

2018年,美国威斯康星大学麦迪逊分校的D. Liu等人报道了一种在AlN本体单晶衬底上使用p型Si增强空穴注入400 nm厚的AlN同质外延229 nm UV - LED,氮化物异质结构使用金属有机化学气相外延(MOVPE)法淀积,76 A/ cm 2 电流密度连续波工作状态下AlN / Al 0.77 Ga 0.23 N多量子阱(MQW)LED未出现效率下降,实现了本体衬底固有的低位错密度特性,证实了该结构是实现UVC LED的有效方法,未来也可用于激光器中。2018年,德国的N. Susilo等人报道了一种采用MOVPE法生长在溅射和高温退火(HTA)AlN / 蓝宝石衬底上的AlGaN基DUV LED,这种350 nm结构与常规ELO AlN / 蓝宝石LED相比,具有相似的缺陷密度、输出功率特性和外部量子效率(EQE),但曲率(-80 km -1 )比ELO结构低1倍,且降低了复杂性和成本。2018年,中国科学院半导体研究所的L. Zhao等人推出了一种在溅射淀积AlN模板上制作的AlGaN基UV - LED,把外延AlN/ AlGaN超晶格结构插入LED结构和AlN模板之间以降低位错密度,这种282 nm LED的光输出功率在20 mA时达 0.28 mW,外部量子效率为0.32%。

2.2.2 激光器

AlN UV激光器适用于激光显微、光谱仪、质谱仪、表面分析、材料处理以及激光光刻等领域。国际上有关AlN紫外激光器的研究相对较少,实现高质量AlN激光器的重要突破是AlN模板与AlN衬底的相互结合。

2016年,R. Kirste等人采用AlN衬底制作出265 nm室温AlGaN紫外激光器,输出功率大于80 mW;同年,C. Liu等人研制了一款采用MOCVD在半极化AlN衬底上制作的波长为250~300 nm的AlInN / GaN量子阱紫外激光器,有源区设计包括一个2.4 nm厚的Al 0.91 In 0.09 N / Al 0.82 In 0.18 N触发层,0.3 nm厚的晶格匹配GaN层,超薄GaN层的作用是把电子—空穴波函数定位于量子阱(QW)中心位置,从而实现较高的水平极化光增益,与传统的AlGaN QW系统相比,255 nm波长下AlInN - GaN QW结构的水平极化光增益提高了3倍,高达3726 cm -1 ,通过调整GaN的厚度可为UV激光器提供一种更加高效的有源区设计方案。

2.2.3 光电探测器

基于宽禁带半导体材料(AlN和GaN等)的紫外探测器由于在紫外天文学、紫外探测、紫外通信、生物化学分析、火焰检测等领域的潜在应用得到了广泛研究。

2017年,德国费迪南德·布劳恩研究所研制出的日盲型Al 0.5 Ga0.5N / AlN金属—半导体—金属(MSM)光电探测器使用薄吸收层和非对称电极设计,在低电压(1 V)条件下实现了较高的外部量子效率值(25%),这种底部照明探测器使用Al 0.5 Ga 0.5 N吸收层和AlN缓冲层异质界面,通过使用对称探测和高密度电极对等综合设计使EQE得到进一步提升。2017年,美国东北大学的Z. Y. Qian等人推出了基于高品质因数(Q)的50 nm厚的AlN压电谐振纳米盘的纳机电系统(NEMS)红外探测器,实现了高热阻(9.2 × 10 5 K/W)和高品质因数(1000),这种AlN NEMS谐振红外探测器具有超快热响应时间(80 μs),探测器的外形尺寸下降到20 μm × 22 μm,品质因数提高了4倍。

国内将AlN材料应用于紫外探测器的研制也取得了较好的成果,2018年,上海大学的沈悦等人对其AlN / CdZnTe基紫外光探测器制备方法及应用技术申请了专利,在1 mm厚的AlN衬底上快速生长了大面积、高质量CdZnTe薄膜,从而使设计的紫外光探测器具有极端环境适应性,以及较强的紫外光响应性。2018年,中山大学的W. Zheng等人报道了一种采用高结晶度多步外延生长技术实现的背靠背型p - Gr /AlN / p - GaN 光电探测器,使用AlN作为光发生载体的真空紫外吸收层,并使用p型石墨烯(透射率大于96%)作为透明电极来收集受激空穴,实现的新型真空紫外光伏检测异质结探测器取得了较理想的光响应度、高外部量子效率,以及极快的温度响应速度(80 ns),比传统光导器件的响应速度提高了10⁴~10⁶倍,这种新技术为实现理想的零功耗集成紫外光伏探测器提供了技术支撑,可使未来空间系统实现更长的服役期和更低的发射成本,同时实现更快速的星际目标探测。

2.3 SAW器件

在已知压电材料中,AlN薄膜的SAW传播速度是最快的,且AlN SAW器件具有良好的化学和热稳定性,以及对外界环境如压力、温度、应力、气体等具有极高的灵敏性,与常规传统Si CMOS技术相兼容,因而成为无源传感、无线传感和移动信号处理的关键部件。随着最近十几年来无线通信技术的飞速发展,SAW传感器、谐振器和滤波器在实现小型化、多功能和高性价比方面有望取代传统半导体器件,成为未来复杂系统的核心技术。

2.3.1 滤波器

AlN滤波器主要包括兰姆波谐振滤波器和SAW / BAW滤波器,兰姆波谐振滤波器在未来单芯片多波段无线通信RF前端系统中使用较多,与SAW滤波器相比更具尺寸优势;AlN在SAW / BAW滤波器中的应用较为成熟,已实现商品化,SAW滤波器多用于中频,BAW滤波器更适合高频应用,且Q值更高,将在4G / 5G等通信领域得到广泛应用。

2015年,天津大学的J. Liang等人推出了一种基于AlN兰姆波谐振器的超小型140 MHz窄带滤波器,采用梯状兰姆波谐振器(LWR)结构,导带插入损耗为2.78 dB,为节约空间进行了优化设计,把电容与LWR单片集成在一起,AlN夹在钼电极中形成三明治结构,分别用作谐振器的压电层和电容器的介质层,在RF通信前端具有很好的应用前景。

2017年,美国卡内基梅隆大学的E. Calayir等人通过AlN MEMS和CMOS芯片的3D异质集成,实现了一种带有自修复功能的窄带滤波器,并且把12个相同的1.15 GHz AlN MEMS子滤波器阵列制作在一个8英寸Si器件上,使滤波器的插入损耗小于3.4 dB,带外抑制(OBR)大于15 dB,通过在AlN MEMS芯片上使用重新分布层使寄生电容下降到原来的1/20,电阻下降到原来的1/5。

2017年,美国Akoustis技术公司的J. B. Shealy等人开发出了一款在SiC衬底上生长单晶AlN压电外延膜的3.7GHz宽带低损耗BAW滤波器,尺寸为1.25 mm × 0.9mm,插入损耗为2.0 dB,器件结构包括生长在150 mm 4H - SiC衬底上的0.6 μm厚的AlN外延层,8层掩模双面晶圆工艺包括溅射淀积金属电极和采用SiC衬底减薄工艺获得的谐振器。该谐振滤波器为实现高频移动、WiFi及其基础设施应用的小型化、大功率和高性能滤波器提供了支持。

2.3.2 传感器

虽然MEMS传感器及其阵列的主流技术仍以Si工艺为主,但AlN MEMS传感器的研究已广泛开展起来,薄膜本体声波传感器在电子鼻和胎压检测等领域应用较多。目前AlN传感器的研究一般是将多个传感器单元集成在同一衬底上,形成传感器阵列,采用激光微加工刻蚀技术进行工艺设计。2015年,俄罗斯的K. A. Tsarik等人报道了一种采用AlN外延膜制作的AlN / AlGaN / GaN HEMT SAW传感器,使用纳米级T型栅和极低厚度势垒,这种单片多层异质结构(MHS)传感器制作在SiC衬底上,采用MBE生长氮化物层,MHS使用厚度为2 μm的高温AlN缓冲层把HEMT与声电子学功能连接起来,测得的SAW的相变灵敏度为6°,主要应用于生物医学领域。2015年,法国的A. Bongrain等人报道了一种制作超薄AlN压电传感器的新技术,采用CMOS技术提高了工艺兼容性,证明了把压电AlN薄膜淀积在Pt上具有更好的压电特性,同时降低了成本,有利于实现单片集成,对于技术的普及和推广十分有益,主要应用于医学检测领域。2015年,Z. Bao等人制作出一种SAW基高灵敏AlN薄膜应变传感器,用于传感器网络,在AlN薄膜上制作了叉指式转换器(IDT),多层膜包括Si衬底上的AlN和Pt / Ti,以及SiO 2 层,SiO 2 层用于声—电隔离和温度补偿,Pt膜用于形成c轴取向AlN膜籽晶层,器件的Q值和有效电子机械耦合系数分别为700和0.46%,该传感器在低温(小于400 ℃)下制作而成,可以使用IC后处理技术嵌入到单片振荡器中。2017年,印度的S. Yenuganti等人推出了一种采用硅岛支撑结构的带有AlN压电型SiN谐振梁的微型压力传感器,两层AlN压电膜夹在两层金属电极中,淀积在SiN谐振梁的边端,用于谐振致动和传感,下层电极完全埋入AlN压电层中。2017年,清华大学的S. L. Fu等人报道了一种在蓝宝石衬底上采用DC磁控溅射法制作的AlN外延膜,使用10 nm厚的ZnO缓冲层极大地改善了AlN外延膜的质量,并释放了膜应力。制备的SAW器件获得了近零应力和极低插损,中心频率为1.4 GHz,相位速度为5600 m/s,适用于通信领域的微传感器和微流量计。

2018年,美国Cornell大学的M. Abdelmejeed等人报道了一种CMOS兼容吉赫兹超声脉冲相移基超高速、高分辨率和宽温度范围传感器,其超声脉冲产生于制作在Si衬底上的3 μm厚的AlN压电薄膜转发器,通过检验证明该传感器在30~120 ℃温度范围时相移温度系数为12°/℃,器件的谐振频率为1.6 GHz,数据采集时间为600 ns,实现了极高的线性特性。

2018年,美国Illinois大学的M. Kabir等人报道了一种AlN薄膜压电MEMS声发射传感器,这种传感器制作在Si衬底上,可在柔性和刚性体两种模式下工作,此MEMS器件包括两种不同频率(40 kHz和200 kHz)的传感器,微结构层包括掺杂硅、AlN和金属层,分别用作底部电极、传感层和顶部电极层,0.5 μm厚的AlN用于制作压电薄膜,该MEMS传感器使用100个单元的10 × 10阵列结构(约1 cm 2 ),用来替代传统的声发射传感器。

2.3.3 谐振器

AlN谐振器一般采用两种常规结构,一是薄膜本体声波谐振器(FBAR),另一种是等高线模式谐振器(CMR),FBAR显示出比CMR更高的电子—机械耦合系数( ) ,而CMR在实现片上小型化方面更具优势,两种结构的核心技术都是AlN薄膜制备工艺,通过调整AlN膜的厚度和质量可获得理想的器件频率。c轴取向AlN薄膜磁控溅射和干法刻蚀工艺是决定CMR谐振器性能的关键工艺,因与CMOS工艺相兼容,且易于在单芯片上集成多频器件,成为实现小尺寸、高品质因数、高频、低阻特性的保证,是下一代无线通信系统中的实用技术。

2015年,C. Cassella等人提出一种集成了FBAR和CMR两种谐振器优势的超高频AlN MEMS二维模式谐振器(2DMR),可以同时激发横向和纵向的声波,这种谐振器使用在两层相同金属栅中间夹5.9μm厚的AlN膜的三明治结构,在顶部和底部同时使用叉指型转换器,增加了设计灵活性,并获得了较高的电子—机械耦合系数和较低的动态电阻,机械品质因数大于2400,品质因数接近40,中心频率的光刻变化大于10%。2015年,C. Li等人研制出一种用于高温(500 ℃)传感器的AlN SAW谐振器,AlN薄膜采用室温下两步生长法淀积在Pt(50 nm) / Si衬底上,为消除AlN和Pt之间的晶格失配需要在Pt界面先淀积一层200 nm厚的富N AlN缓冲层,之后高速淀积2 μm AlN薄膜,这种AlN谐振器采用的是Pt底部悬浮电极,可实现更高的温度敏感性。2017年,美国桑迪亚实验室的M. D. Henry等人推出一种用于RF滤波器的AlN和Sc 0.12 Al 0.88 N CMR谐振器,在AlN中引入钪(Sc)能极大地增强压电极化效应,ScAlN压电膜可改进有效耦合系数,同时保证谐振器具有良好的品质因数。

2017年,清华大学的W. Z. Wang等人报道了一种尺寸为1107 μm × 721 μm的AlN / 4H - SiC多层结构SAW谐振器,这种谐振器采用MEMS兼容工艺制作而成,c轴取向2 μm厚的AlN薄膜采用RF反应磁控溅射工艺淀积在4H - SiC衬底上,AlN的衍射峰值为36.10°,最低半峰全宽值(FWHM)仅为1.19°,同样适合在恶劣环境中应用。2017年,新加坡的N. Wang等人报道了采用硅通孔(TSV)集成技术的AlN压电谐振器,1 μm厚的AlN压电薄膜夹在两层约为0.2 μm厚的Mo电极之间,谐振频率大于2 GHz,动态阻抗小于10 Ω,可用于高频段长期演进(LTE)通信领域,在-40~125 ℃进行750次热循环试验之后没有出现频率漂移,因其超级可靠性和长期稳定性深受青睐。2018年,中国科学院的S. Yang等人推出了一种1 μm厚的AlN/ 蓝宝石双层衬底上制作的单端SAW谐振器,并对SAW波长(λ)、叉指转换器的孔径(L IDT )、反射器光栅的数量(N ref )以及反射器类型等参数对AlN谐振器的性能影响进行了分析,当λ = 8 μm时,声波速度为5536 ms -1 ,最大回波损耗幅差值为0.42 dB, 为0.168%,从而使L IDT 从80 μm上升为240 μm,且非常适合高温传感器的应用。

2.4 电力电子器件

AlN具有极高的临界电场、高关态阻断电压、超低导通电阻、超快开关速度以及耐恶劣环境等优势,成为制备耐高压、高温电力电子器件的理想选择,在汽车电子、电动机车、高压输电及高效功率转换等方面具有较大潜力。据预测,AlN器件的功率处理能力是SiC和GaN的15倍,因此被冠名为“下下代电力电子器件材料”,此外开发单晶低位错密度AlN衬底(小于10 3 cm -2 )是实现高质量富AlAlGaN薄膜的基础,在AlN同质衬底上生长富Al AlGaN薄膜与蓝宝石衬底相比可使电阻率极大下降。

2016年,日本的H. Nogawa等人报道了一种采用新型薄AlN衬底制作的大功率绝缘栅双极晶体管(IGBT)模块,实现了高热耗散能力和高功率密度,有望应用于逆变器、工业自动化、再生能源以及电动机车领域,新的AlN薄绝缘衬底采用三种工艺实现:优化烧结条件加强AlN衬底的强度,改变铜线设计以降低应力,优化设计保证绝缘能力,使薄层AlN衬底的热导率达到170 W · m -1 · K -1 ,强度500 MPa,热膨胀系数为10 -6 / K,有效抑制了衬底下焊接断裂的传播,极大地提升了IGBT的使用寿命。2016年,德国的S.Moench等人提出了一种用于2 kW单相光伏逆变器的导热型AlN功率模块,这种采用SiC沟槽型MOSFET的半桥和全桥功率模块使用了AlN衬底混合式集成栅驱动器,采用电—热联合仿真和Al热沉,实现了高开关频率和低热阻,直接键合铜AlN衬底厚度为0.63 mm,最大输出功率2 kW,结-热沉热阻为0.3 K/W,美国加州能源协会(CEC)效率为95.4%,功率密度为3.14 kW/l,超高热导率为170 W · m -1 · K -1 ,为实现小型、高效电力电子系统提供了支撑。2016年,西安电子科技大学的S. Yang等人报道了带有等离子体增强原子层淀积(PEALD)AlN / GaN异质结构的新型垂直GaN沟槽结构功率器件,新结构在完成n - 高阻层 - n GaN外延沟槽刻蚀之后采用PEALD法淀积了3~5 nm厚的AlN层,实现了具有高电子密度和迁移率的垂直2DEG沟道,阈值电压为2 V,与传统GaNMOSFET相比,这种新型器件实现了9倍跨导和9 kA/cm 2 的极高漏电流密度,在未来功率开关领域具有应用优势。

3 结语

国内AlN材料和器件技术与国际相比差距较大,要实现大尺寸、高质量、可批量化自主生产的AlN材料还需在材料制备技术方面如:AlN块体单晶的PVT和HVPE技术研究等进行深入研究;开展AlN高温高频大功率HEMT、异质结FET和MISFET微波毫米波器件、260~280 nm波长紫外LED、高Al组分AlGaN紫外APD探测器、SAW / BAW滤波器件等方面的研究。未来AlN材料将在微波毫米波器件、光电子器件、微机械和电力电子等领域发挥巨大的作用。返回搜狐,查看更多

责任编辑:

平台声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。

阅读 ()

推荐阅读

AlN formation by an Al/GaN substitution reaction | Scientific Reports

AlN formation by an Al/GaN substitution reaction | Scientific Reports

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain

the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in

Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles

and JavaScript.

Advertisement

View all journals

Search

Log in

Explore content

About the journal

Publish with us

Sign up for alerts

RSS feed

nature

scientific reports

articles

article

AlN formation by an Al/GaN substitution reaction

Download PDF

Download PDF

Article

Open access

Published: 03 August 2020

AlN formation by an Al/GaN substitution reaction

Marsetio Noorprajuda1, Makoto Ohtsuka1, Masayoshi Adachi1 & …Hiroyuki Fukuyama1 Show authors

Scientific Reports

volume 10, Article number: 13058 (2020)

Cite this article

2451 Accesses

3 Citations

Metrics details

Subjects

Materials for devicesMaterials for opticsMaterials science

AbstractAluminium nitride (AlN) is a promising semiconductor material for use as a substrate in high-power, high-frequency electronic and deep-ultraviolet optoelectronic devices. We study the feasibility of a novel AlN fabrication technique by using the Al/GaN substitution reaction method. The substitution method we propose here consists of an Al deposition process on a GaN substrate by a sputtering technique and heat treatment process. The substitution reaction (Al + GaN = AlN + Ga) is proceeded by heat treatment of the Al/GaN sample, which provides a low temperature, simple and easy process. C-axis-oriented AlN layers are formed at the Al/GaN interface after heat treatment of the Al/GaN samples at some conditions of 1473–1573 K for 0–3 h. A longer holding time leads to an increase in the thickness of the AlN layer. The growth rate of the AlN layer is controlled by the interdiffusion in the AlN layer.

Similar content being viewed by others

Enhancement of gallium nitride on silicon (111) using pulse atomic-layer epitaxy (PALE) AlN with composition-graded AlGaN buffer

Article

Open access

31 May 2023

Marwan Mansor, Rizuan Norhaniza, … Mohd Rofei Mat Hussin

Impact of sandwiched strain periodic multilayer AlN/GaN on strain and crystalline quality of a-plane GaN

Article

Open access

06 May 2021

Anas Kamarundzaman, Ahmad Shuhaimi Abu Bakar, … Wan Haliza Abd Majid

Group-III nitride heteroepitaxial films approaching bulk-class quality

Article

22 June 2023

Jiaming Wang, Nan Xie, … Bo Shen

IntroductionAluminium nitride (AlN) is a promising semiconductor material for use as a substrate in high-power, high-frequency electronic and optoelectronic devices. It can be used as a substrate in AlGaN-based ultraviolet C (UV-C) optoelectronic devices owing to its wide bandgap (above 6 eV)1, UV transparency2, and close lattice constant with that of AlGaN3. AlN can be grown in two forms: film and bulk. AlN films have been fabricated by various methods, such as metal–organic vapour-phase epitaxy (MOVPE)4,5, hydride vapour phase epitaxy (HVPE)6,7, pulsed laser deposition (PLD)8,9, molecular beam epitaxy (MBE)10,11, or sputtering12,13, to improve its crystalline quality, surface area, growth rate, or lower its processing temperature. Annealing techniques have been demonstrated to improve the crystalline quality of AlN films14,15,16.To facilitate the further development of AlN crystal growth, several researchers have developed original and unconventional techniques. For example, the pyrolytic transportation method17, the liquid phase epitaxy (LPE) method using a Ga-Al binary solution18, Al-Sn flux growth19, AlN fabrication by using Al and Li3N solid sources20, and elementary-source vapour-phase epitaxy (EVPE)21 have been demonstrated. In the pyrolytic transportation method17, α-Al2O3 is used as an Al-source material, and it is heated at 2223 K to form Al2O gas in the nitrogen gas flow. The Al2O gas is transported to the growth zone to react with nitrogen gas at 2023 K on a sintered AlN plate for 30 h, which yields a rod-like AlN crystal (48-mm long). The advantages of this method are an economically friendly α-Al2O3 source and good crystalline quality of AlN. Wu et al.21 used metallic Al and nitrogen gas as source materials to grow an AlN crystal, which they called elementary-source vapour-phase epitaxy (EVPE). They grew the AlN with a growth rate of 18 μm/h under an optimum growth zone temperature of 1823 K. The advantages of this method are that it is conducted at a temperature lower than that of the sublimation method using no hazardous gas. Regarding the LPE methods, Adachi et al.18 grew a 1-µm-thick c-axis-oriented AlN layer on nitrided c-plane sapphire using a Ga-40 mol% Al flux with nitrogen gas injection at 1573 K for 5 h. The X-ray rocking curve full width at half maximum (XRC-FWHM) of AlN (0002) and AlN (10–12) were 50 and 590 arcsec, respectively. The advantages of this method are the uses of a moderate growth temperature and atmospheric pressure. Song et al.19 grew AlN single crystals with a size of 50 μm using an Al–Sn melt under a nitrogen gas atmosphere. Kangawa et al.20 also fabricated an AlN layer on an AlN seed by using Al and Li3N solid sources. Some of the above-mentioned methods might have the potential to grow bulk AlN crystals.AlN in the bulk form is necessary to obtain the best performance of optical and electronic devices because of its significantly low threading dislocation density compared with AlN films grown on hetero-substrates. The AlN bulk crystal has been mostly grown through physical vapour transport (PVT)22,23 and HVPE24,25. The PVT technique is essentially the only method to fabricate high-quality crystalline AlN26,27. However, the PVT technique requires a high growth temperature of approximately 2473 K, which consumes a lot of energy and can be expensive. By lowering the growth temperature, a green AlN manufacturing process can be achieved with a reasonable cost. The HVPE technique is usually conducted at a temperature below that of the PVT. However, the HVPE technique requires high-quality PVT-AlN substrates to obtain a low threading dislocation density. Thus, it seems that no further developments can be made in the common AlN fabrication technologies.To determine a novel technique for growing AlN to increase the possibility of further developments, here, we introduce an Al/GaN substitution reaction method. In this method, an Al layer deposited on a GaN substrate is used as a precursor, and AlN is obtained by the interfacial reaction between Al and GaN. The details are given in the next section. There are two purposes of this study. The first is to develop a novel technique to potentially grow a bulk AlN crystal by a substitution reaction of Al and GaN. The second is to fabricate an AlN film/GaN substrate structure that is also useful in some devices, for example, as a substrate in AlGaN/AlN/GaN high-electron-mobility transistors28,29 or as an insulated gate in AlN/GaN heterostructure field-effect transistors30,31. To the best of our knowledge, there have only been a few reports on fabricating AlN by heat treatment of Al on a GaN substrate. Luther et al. obtained a 2–3-nm-thick AlN layer by the heat treatment of Ti/Al and Pd/Al on GaN under Ar atmosphere at 600 °C for 15 and 30 h32. Moreover, Wang et al. demonstrated the advantage of Al buffer layers to obtain high-quality and stress-free GaN epitaxial films on Si substrates. In their study, an Al buffer layer with a thickness of 20–40 nm was grown on a Si substrate and, subsequently, a 250-nm-thick GaN film was grown on the Al buffer layer at 1123 K by PLD. The AlGaN peak was observed in the X-ray diffractometer (XRD) 2θ − ω scan profiles. However, AlN was not obtained33.This paper focuses on the investigation of AlN fabrication by the substitution method at relatively low temperatures (around 1573 K). In this method, GaN was used as a starting material because it has the same wurtzite structure as AlN and has close lattice constants with those of AlN34,35. Currently, GaN is commercially available from several companies and institutions. There has been a tremendous amount of research on GaN. It has already been grown and investigated by the HVPE method36,37, ammonothermal method38,39, Na flux method40,41,42,43 and high-pressure solution growth method as reported in a review by Amano44. Although the GaN substrate is still expensive, large size GaN substrates will hopefully be available at a reasonable cost in the near future based on the ongoing intensive studies45. The substitution method we propose here consists of only Al deposition on a GaN substrate by a sputtering technique and heat treatment process, which provides some benefits such as much lower growth temperature, compared with the sublimation method (2473 K), and a simple and easy process. This study introduces the details of the Al/GaN substitution method including some fundamental results and discussion on the growth mechanism.Principle of Al/GaN substitution methodFigure 1 shows a schematic diagram of the Al/GaN substitution method. This process starts with an Al layer deposited on a GaN bulk crystal, as shown in Fig. 1 (left). AlN is thermodynamically more stable than GaN. Ga atoms in the GaN can be substituted by Al atoms during heating the sample in an inert gas atmosphere. Thus, an AlN layer forms at the Al/GaN interface by the substitution reaction (1). This process proceeds with time by atomic diffusion through the AlN layer. The driving force of the reaction and mass transport can be controlled by selecting the temperature.$${\text{Al}}\,\left( {\text{l}} \right) + {\text{GaN}}\,\left( {\text{s}} \right) \rightleftarrows {\text{AlN}}\,\left( {\text{s}} \right) + {\text{Ga}}\,\left( {\text{l}} \right)$$

(1)

Figure 1Schematic diagram of the Al/GaN substitution method.Full size image

From the thermodynamic point of view, the standard Gibbs energy of reaction (1) is determined by the following equation below:$$\Delta G^\circ = \Delta_{{\text{f}}} G^\circ_{{{\text{AlN}}}} - \Delta_{{\text{f}}} G^\circ_{{{\text{GaN}}}}$$

(2)

where the standard Gibbs energies of formation of AlN and GaN, \(\Delta_{{\text{f}}} G^\circ_{{{\text{AlN}}}} \,{\text{and}}\,\Delta_{{\text{f}}} G^\circ_{{{\text{GaN}}}}\), are − 134.246 and 21.1 kJ/mol47, respectively, at 1573 K. Thus, the standard Gibbs energy of reaction (1) is − 155.3 kJ/mol, which implies the reaction spontaneously proceeds to the right-hand side.ResultsThermal analysisPrior to the Al/GaN substitution reaction experiment, the thermal stabilities of metallic Al, single crystalline GaN and an Al layer deposited on GaN (Al/GaN) were studied by thermogravimetry–differential scanning calorimetry (TG–DSC). Figure 2 shows the TG–DSC profiles of these materials in an Ar atmosphere. Figure 2a shows that the profile of metallic Al was almost parallel to the profile of an empty cell (as a baseline). This implied that vaporization of Al is not significant up to 1673 K. However, the GaN profile started to exhibit a mass reduction from its baseline at 1473 K (as shown by the red dashed line in Fig. 2b). This implied that the GaN started to dissociate into Ga and nitrogen gas at 1473 K according the following reaction:$${\text{GaN}}\left( {\text{s}} \right) \rightleftarrows {\text{Ga}}\left( {\text{l}} \right) + \frac{1}{2}{\text{N}}_{2} \left( {\text{g}} \right)$$

(3)

Figure 2TG–DSC profiles of (a) metallic Al, (b) GaN and (c) Al/GaN.Full size imageMeanwhile, The TG–DSC profile of Al/GaN started to show a mass reduction from its baseline at 1323 K (see the blue dashed line in Fig. 2c), 150 K lower than that for the GaN dissociation. If the substitution reaction (1) takes place alone, no mass reduction would occur. However, the GaN dissociation reaction (3) can take place together with reaction (1) at a lower temperature, because the Ga activity is greatly reduced by mixing Ga with Al.Al/GaN substitution reactionCross-sectional SEM imageFigure 3 shows the cross-sectional scanning electron microscopy (SEM) image of the AlN layer formed on the GaN substrate by the substitution reaction: A 7.6-μm-thick Al layer deposited on Ga-polar GaN substrate was annealed in an Ar atmosphere for 3 h at 1573 K. The AlN layer had the same crystal orientation with that of the GaN substrate, which will be explained by the in-plane crystallographic relationship described later.Figure 3Cross-sectional SEM image of the AlN layers obtained after heat treatment of Al/GaN sample at 1573 K for 3 h.Full size image

Bird’s-eye view SEM–EDS imagesFigure 4 shows the bird’s-eye view SEM–EDS images of the Al on GaN substrate heat treated at 1573 K for 3 h. A metallic Ga droplet was observed on the Al/GaN sample. The Ga was formed by the substitution reaction (1) at the Al/GaN interface, and somehow it moved up to the surface of the Al/GaN sample. This is evidence of Ga formation by the substitution reaction. The AlN layer was hardly observed at this scale because the AlN thickness was only around 1.5 µm.Figure 4SEM-EDS images of a metallic Ga droplet observed above the Al layer after heat treatment of the Al/GaN sample at 1573 K for 3 h.Full size imageCrystalline orientationFigure 5a shows the XRD 2θ − ω scan profiles of the bare GaN substrate and Al/GaN samples with and without heat-treatment at 1573 K for 3 h. The profiles show that a c-axis-oriented AlN layer was obtained after heat treatment of the Al/GaN sample. The peak position of the AlN (0002) at a 2θ value of 36.0° reflections is also shown by the dashed line in Fig. 5a as a reference. AlN (0002) and GaN (0002) peaks were obtained for the heat-treated Al/GaN sample. Figure 5b shows the ϕ-scans of AlN {10–12} and GaN {10–12} for the heat-treated Al/GaN substrate. Both AlN {10–12} and GaN {10–12} exhibited 6 peaks, and they agreed with each other. From Fig. 5a,b, the in-plane crystallographic relationship between the AlN layer and GaN substrate is:$${\text{AlN}}\,\left\{ {0002} \right\}//{\text{GaN}}\,\left\{ {0002} \right\}.$$

(4)

$${\text{AlN}}\,\left\{ {10{-}12} \right\}//{\text{GaN}}\,\left\{ {10{-}12} \right\}.$$

(5)

Figure 5(a) XRD profile of the heat-treated Al/GaN sample at 1573 K for 3 h together with bare GaN and Al/GaN samples before heat treatment, (b) ϕ-scans of AlN {10–12} and GaN {10–12} for the Al/GaN sample after heat treatment at 1573 K for 3 h.Full size image

Ga peaks were not observed, which implied that the amount of formed Ga was too small to be detected by XRD. A certain amount of GaN may dissolve in AlN forming an AlxGa1−xN solution, which would cause the blunt peak of AlN (0002). The formation of AlxGa1−xN will be described in the cross-sectional transmission electron microscope (TEM) observation section.Lattice constantFigure 6 shows the lattice constant of the AlN layers obtained after heat treatment of Al/GaN samples with various heat treatment temperatures and holding times. The lattice constants c of the AlN layers are almost the same with that of bulk AlN, but the lattice constants a are slightly larger than that of bulk AlN, and they approach that of bulk AlN with holding time.Figure 6Lattice constants a and c of the AlN layers obtained after heat treatment of Al/GaN samples with various heat treatment temperatures and holding times together with those of bulk AlN.Full size image

Residual stressFigure 7 shows the residual stresses of the AlN layers evaluated from the lattice constants presented in Fig. 6. The residual stresses along c-axis are almost zero. However, the residual tensile stresses along a-axes exist in the AlN layers and they approach zero with holding time. The thermal expansion coefficient along a-axis of GaN (6.2 × 10–6 K−1)48 is smaller than that of AlN (6.9 × 10–6 K−1)49, which may generate tensile stress along a-axis in the AlN layer near the AlN/GaN interface during cooling.Figure 7Residual stresses along the a- and c-axis of the AlN layers obtained after heat treatment of Al/GaN samples with various heat treatment temperatures and holding times together with those of bulk AlN.Full size image

Crystalline quality of AlNFigure 8 shows the XRC-FWHM of AlN (0002) and AlN (10–12) after heat treatment of Al/GaN samples with various holding times in the range of 0–3 h at temperatures of 1573–1673 K. Even though an AlN layer was obtained after heat treatment of Al/GaN at 1473 K for 3 h, its XRC-FWHM values are not shown owing to its low crystalline quality. The XRC-FWHM of AlN (10–12) decreased with increasing holding time. The XRC-FWHM values for GaN before heat treatment were in the range of 83–124 arcsec for GaN (0002) and 83–108 arcsec for GaN (10–12). Here, the XRC-FWHM values for the AlN obtained from the substitution method were quite large compared with the GaN substrate as a starting material. This could be because a certain amount of GaN non-uniformly dissolved in the AlN layer, as discussed in the next TEM observation section. The screw- and edge-type dislocations of the AlN layers were estimated from the XRC-FWHM12 at various heat treatment temperature and holding time, which are summarized in Table 1.Figure 8XRC-FWHM of AlN (0002) and AlN (10–12) after heat treatment of Al/GaN samples with various holding times of 0–3 h at temperatures of 1473–1673 K.Full size image Table 1 Screw and edge dislocation densities in the AlN layers at various heat treatment temperatures and holding times together with those in the original GaN substrate estimated from XRC-FWHM (N/A means not available).Full size tableCross-sectional TEM observationFigure 9a shows the cross-sectional TEM image of the AlN layer obtained after heat treatment of an Al/GaN sample at 1573 K for 3 h with an incident beam along GaN [1–100]. Thus, the AlN layer and GaN substrate could be clearly seen and distinguished from each other. It was observed that the AlN layer had a smooth surface, but the interface between AlN layer and GaN substrate was rough. In the AlN layer, some voids were observed (marked by the red-dashed-circles). The electron diffraction patterns of areas 1, 2, 3 and 4 (marked by the white circle) were measured. The Miller’s indices designated in areas 1, 2 and 3 belonged to the wurtzite structure of AlN (JCPDS file number 00–025-1133) and those in area 4 belonged to the wurtzite structure of GaN (JCPDS file number 00–002-1078). Areas 1 and 2 exhibited the same diffraction pattern as AlN; however, area 3 had some extra diffraction patterns in addition to the diffraction pattern of AlN. These extra diffraction patterns indicated the formation of a solid solution of Al1−xGaxN in area 3 near the interface between AlN and GaN. To investigate this further, the AlN section marked by a white square was observed by dark-field-TEM, as shown at the bottom-left of Fig. 9a. It showed the grain consisted of Al, Ga and N, as indicated by the energy dispersive X-ray (EDX) spectra of point c shown in Fig. 9b. This several-hundred-nanometre sized Al1−xGaxN grain was formed near the AlN/GaN interface, where Al diffused to GaN and partially substituted Ga at the Ga site forming Al1−xGaxN before it completely formed AlN.Figure 9(a) Cross-sectional TEM image of the AlN layer obtained after heat treatment of Al on a GaN substrate at 1573 K for 3 h with an incident beam along GaN [1–100]. The Miller’s indices of AlN and GaN are also presented. (b) EDX spectra at points a, b, c of the AlN layer and point d of the GaN substrate shown in (a). (c) Concentrations of Al, Ga, N and O in at% at points a, b c of the AlN layer and point d of the GaN substrate shown in (a).Full size image

Figure 9b shows the EDX spectra at points a, b, c and d designated in Fig. 9a. Al and N peaks were detected at point a. However, Al and N peaks were detected in addition to a Ga peak at points b and c. Thus, Ga non-uniformly distributed in the AlN layer. The N peak intensities at points b, c, and d were lower than that at point a. This may imply that nitrogen atoms exited in the form of N2 gas, which resulted in some voids. Thus, the formation of N2 gas may cause the deviation of the TG curve of the Al/GaN sample from the baseline observed in Fig. 2c. The oxygen peak appearing at point b may have originated from contamination during the sputtering process of Al layer, and the oxygen was trapped in the AlN layer during the heat treatment. Figure 9c shows the concentrations of Al, Ga, N and O atoms in at% at points a, b, c and d. The AlN layer contains 6.3 at% O at point b, and 0.5–0.6 at% O at other points.DiscussionGrowth model of the substitution reaction methodThe growth model of the Al/GaN substitution reaction method is proposed as follows. Initially, Al reacts directly with GaN forming an AlN layer at the Al/GaN interface. A subsequent reaction occurs through the mass diffusion in the AlN layer. Figure 10 shows the growth model of an AlN layer in the Al/AlN/GaN structure. There are two interfaces: the Al/AlN and AlN/GaN interfaces. At the Al/AlN interface, metallic Al is oxidized to be Al3+, then it diffuses in the AlN layer towards the AlN/GaN interface. At the AlN/GaN interface, the Al3+ substitutionally reacts with GaN forming AlN and Ga3+. The Ga3+ then diffuses towards the Al/AlN interface, and it is reduced to be metallic Ga by the reaction with three electrons. The growth model is summarized as follows,Figure 10Growth model of AlN in the Al/AlN/GaN structure.Full size image

At the Al/AlN interface:$${\text{Al}} \rightleftarrows {\text{Al}}^{3 + } + 3{\text{e}}^{ - }$$

(6)

$${\text{Ga}}^{3 + } + 3{\text{e}}^{ - } \rightleftarrows {\text{Ga}}$$

(7)

The total reaction at the Al/AlN interface is given by.$${\text{Al}}\, + \,{\text{Ga}}^{{{3} + }} \, \rightleftarrows \,{\text{Al}}^{{{3} + }} \, + \,{\text{Ga}}$$

(8)

At the AlN/GaN interface:$${\text{Al}}^{3 + } + {\text{GaN}} \rightleftarrows {\text{AlN}} + {\text{Ga}}^{3 + }$$

(9)

The overall reaction is given by the sum of reactions (6)–(9)$${\text{Al}} + {\text{GaN}} \rightleftarrows {\text{AlN}} + {\text{Ga}}$$

(10)

The growth rate of AlN can be controlled by either interfacial reactions or interdiffusion. Assuming the interfacial reaction rates are much faster than interdiffusion, the growth rate is controlled by the diffusion.Kinetics of AlN growthFigure 11a shows the holding time dependence of the AlN thicknesses after heat treatment of the Al/GaN samples at 1473–1673 K. Here, the AlN thickness was measured from the cross-sectional SEM images.Figure 11(a) Holding time dependence of the AlN thicknesses after heat treatment of the Al/GaN samples at 1473–1673 K. Error bars show the standard deviation of the AlN thickness. (b) Relation between square of the AlN thickness and holding time, and (c) Arrhenius plot of the AlN growth by the substitution reaction method.Full size imageThere was no AlN layer formed at zero holding time at 1473 and 1573 K. This implied that the substitution reaction proceeds at a slow rate and needs time to form the AlN below 1673 K. The temperature effect on the thickness of AlN is difficult to observe because GaN decomposition is more aggressive in high temperatures (1623 and 1673 K) and affects the AlN thickness. The longer the holding time leads to the thicker AlN film. Assuming the parabolic rate law, Fig. 11a was revised as Fig. 11b. The parabolic rate constant kp’ (μm2/h) is given by the following equation,$$x^{2} = 2k_{p}^{\prime } t$$

(11)

here x (μm) is the AlN thickness and t (h) is the holding time. The Arrhenius plot is shown in Fig. 11c. The activation energy was calculated from the slope of the Arrhenius plot to be 121 ± 66 kJ/mol. The uncertainty is large owing to non-uniform AlN thickness after heat treatment of Al/GaN at temperatures of 1623 and 1673 K. This value has the same order with diffusion-controlled mechanism of some high-temperature oxidation studies of AlN. For instance, the activation energies for the oxidation of AlN obeying the parabolic rate law have been reported as 160 kJ/mol for the CaC2-doped AlN bulk at temperatures above 1523 K50 and 255 kJ/mol for the AlN bulk in the temperature range of 1173–1373 K51. The activation energies associated with the linear oxidation rate law of AlN have been reported as 175 kJ/mol for the AlN bulk in the temperature range of 1423–1623 K52 and 187 kJ/mol for the Y2O3-doped AlN bulk in the temperature range of 1323–1623 K53.MethodsSample preparationAl films were deposited on Ga-polar GaN substrates using magnetron pulsed DC sputtering (Shimadzu, HSR552). An Al target (High Purity Chemicals, diameter: 101.6 mm, purity: 99.999 mass%) was used. A pulsed DC power of 600 W (Advanced Energy, Pinnacle Plus + 10 kW) was used with a frequency of the pulse of 100 kHz and a duty cycle of 60%. The square-wave pulse type was chosen. The distance between the target and the GaN substrate was 60 mm. The Ar gas (99.9999% purity) equipped with an oxygen filter (Nanochem Purifilter; Matheson PF-25 Serial number P02241) was introduced into the chamber with a flow rate of 1.7 × 10−4 L/s (10 sccm) and the total pressure was maintained at 0.6 Pa during sputtering. The oxygen filter removed NOx, SOx, H2S, < 0.1 ppb of H2O, O2, CO2, < 1 ppb of CO, and < 0.1 ppb of non-methane hydrocarbons from the argon gas. The growth temperature was fixed at 298 K. The sputtering time was 27 min that corresponded to 7.6-μm-thick Al on Ga-polar GaN substrates (Suzhou Nanowin Science and Technology Co. Ltd., size: 10 × 10.5 mm2, thickness: 350 ± 25 μm, crystal orientation: c-plane (0001), off-angle toward m-axis: 0.35° ± 0.15°, resistivity at 300 K: < 0.1Ω · cm, surface roughness of the front surface: Ra < 0.2 nm).Thermogravimetry–differential scanning calorimetryThe starting temperature for GaN dissociation was determined by a TG–DSC (Netzsch, STA 449 F3 Jupiter) measurement. The purge Ar gas with a flow rate of 50 mL/min and protective Ar gas with a flow rate of 20 mL/min at 1673 K were used. The total pressure was maintained at 0.1 MPa. The heating rate was kept at 1.67 × 10−1 K/s (10 K/min). Al wire standard material (Netzsch Gerätebau GmbH 99.999 mass%, diameter: 1.0 mm) and Al/GaN samples were heated to around 1673 K, then cooled to room temperature and then held there for 20 min. GaN sample was heated to 1673 K, cooled to 873 K and then kept at 873 K for 10 min. This procedure was repeated, and the sample was cooled to room temperature. The baselines using an empty cell were also measured.Substitution reaction experimentFigure 12 shows a schematic diagram of the experimental setup for the Al/GaN substitution reaction experiment. The Al/GaN sample was placed upside-down. The samples were heated to the temperature range of 1473–1673 K in an Ar gas atmosphere with a flow rate of 30 mL/min at 293 K and cooled to room temperature after reaching each heat treatment temperature. From the TG–DSC result of Al/GaN in Fig. 2c, the starting temperature of Al/GaN substitution reaction was 1323 K. However, from Fig. 11, the AlN thickness at 1473 K even for 3 h was very small. Therefore, we selected 1473 K as the lowest experimental temperature. On the other hand, the GaN decomposition became more aggressive with increasing temperature as shown in Fig. 2b. Thus, the maximum temperature was selected at 1673 K, but it was applied only for the short-duration experiments less than 1 h. The heating and cooling rates were held constant at 10 K/min. The total pressure was kept at 106.5 kPa in the chamber. The holding time was varied from 0 to 3 h for 1473 and 1573 K, but only 0 and 1 h for 1623 and 1673 K.Figure 12Schematic diagram of the heat treatment equipment.Full size imageSample characterizationThe thickness, crystalline quality and cross-sectional image of the AlN layers formed between the Al layer and GaN substrate were evaluated around the middle part of the substrates. The interface morphology and the bird’s-eye view of the AlN layers were examined using a SEM (JEOL JCM-5700). The AlN thickness was evaluated from these images. The 2θ − ω scan profile, where 2θ is the diffraction angle between the incident X-ray and the detector, and ω is the incident angle between the incident X-ray beam and the sample surface, and the X-ray rocking curve (XRC) profile were obtained using an XRD (Bruker, D8 Discover MR). An X-ray source of Cu-Kα radiation was selected. The XRD system was equipped with two Ge (400) crystals in its monochromator and a single-bounce Ge (220) in the analyser. The voltage and current in the X-ray cylinder during the XRD measurement were 40 kV and 40 mA. The 2θ − ω scan was conducted with a step size of 0.05°. The ϕ-scan was performed with a 0.1° step size where ϕ is a rotational axis normal to the sample surface.A TEM (Hitachi High Technologies, H-9000NAR), with an acceleration voltage of 200 kV and a magnification accuracy of ± 10%, was used to acquire the TEM images and electron diffraction patterns. An EDX equipped to the TEM system (Hitachi High-Technologies HD-2700) was used to carry out the elemental analysis at some points of the sample. The beam diameter was approximately 0.2 nm. Before the sample was measured by TEM and EDX, the remaining Al on the AlN was removed by wet etching using a 0.1 mol/L HCl aqueous solution at 353 K for 3 h, and then, the sample was pre-treated with a thinning process by focused ion beam (FIB) apparatus using the μ-sampling method.

ReferencesShah, A. & Mahmood, A. Effect of Cr implantation on structural and optical properties of AlN thin films. Phys. Rev. B 407, 3987–3991. https://doi.org/10.1016/j.physb.2012.06.028 (2012).Article 

CAS 

Google Scholar 

Bickermann, M. et al. UV transparent single-crystalline bulk AlN substrates. Phys. Status Solidi C 7, 21–24. https://doi.org/10.1002/pssc.200982601 (2010).Article 

ADS 

CAS 

Google Scholar 

Kida, Y. et al. Growth of crack-free and high-quality AlGaN with high Al content using epitaxial AlN (0001) films on sapphire. Phys. Status Solidi A 194, 498–501. https://doi.org/10.1002/1521-396X(200212)194:2%3c498::AID-PSSA498%3e3.0.CO;2-K (2002).Article 

ADS 

CAS 

Google Scholar 

Lemettinen, J. et al. MOVPE growth of nitrogen- and aluminum-polar AlN on 4H-SiC. J. Cryst. Growth 487, 50–56. https://doi.org/10.1016/j.jcrysgro.2018.02.020 (2018).Article 

ADS 

CAS 

Google Scholar 

Mogilatenko, A. et al. Crystal defect analysis in AlN layers grown by MOVPE on bulk AlN. J. Cryst. Growth 505, 69–73. https://doi.org/10.1016/j.jcrysgro.2018.10.021 (2019).Article 

ADS 

CAS 

Google Scholar 

Chen, J. J., Su, X. J., Huang, J., Niu, M. T. & Xu, K. Effects of 6H-SiC substrate polarity on the morphology and microstructure of AlN films by HVPE with varied V/III ratio. J. Cryst. Growth 507, 196–199. https://doi.org/10.1016/j.jcrysgro.2018.11.018 (2019).Article 

ADS 

CAS 

Google Scholar 

Huang, J., Niu, M. T., Sun, M. S., Su, X. J. & Xu, K. Investigation of hydride vapor phase epitaxial growth of AlN on sputtered AlN buffer layers. Cryst. Eng. Commun. 21, 2431–2437. https://doi.org/10.1039/c8ce02192a (2019).Article 

CAS 

Google Scholar 

Chale-Lara, F. et al. Deposit of AlN thin films by nitrogen reactive pulsed laser ablation using an Al target. Rev. Mex. Física 65, 345–350. https://doi.org/10.31349/RevMexFis.65.345 (2019).Article 

Google Scholar 

Kolaklieva, L. et al. Pulsed laser deposition of aluminum nitride films: correlation between mechanical, optical, and structural properties. Coatings 9, 195–210. https://doi.org/10.3390/coatings9030195 (2019).Article 

CAS 

Google Scholar 

Yu, J. et al. Study on AlN buffer layer for GaN on graphene/copper sheet grown by MBE at low growth temperature. J. Alloys Compd. 783, 633–642. https://doi.org/10.1016/j.jallcom.2019.01.007 (2019).Article 

CAS 

Google Scholar 

Rennesson, S. et al. Ultrathin AlN-based HEMTs GROWN ON SILICON SUBSTRATE BY NH3-MBE. Phys. Status Solidi A 215, 1700640–1–1700640–4. https://doi.org/10.1002/pssa.201700640 (2018).Article 

CAS 

Google Scholar 

Noorprajuda, M., Ohtsuka, M. & Fukuyama, H. Polarity inversion of AlN film grown on nitrided a-plane sapphire substrate with pulsed DC reactive sputtering. AIP Adv. 8, 045124-1045124–1–045124-1–11. https://doi.org/10.1063/1.5024996 (2018).Article 

CAS 

Google Scholar 

Susilo, N. et al. AlGaN-based deep UV LEDs grown on sputtered and high temperature annealed AlN/sapphire. Appl. Phys. Lett. 112, 041110-1-041110–5. https://doi.org/10.1063/1.5010265 (2018).Article 

ADS 

CAS 

Google Scholar 

Fukuyama, H., Miyake, H., Nishio, G., Suzuki, S. & Hiramatsu, K. Impact of high-temperature annealing of AlN layer on sapphire and its thermodynamic principle. Jpn. J. Appl. Phys. 55, 05FL021-05FL025. https://doi.org/10.7567/JJAP.55.05FL02 (2016).Article 

Google Scholar 

Miyake, H. et al. Annealing of an AlN buffer layer in N2–CO for growth of a high-quality AlN film on sapphire. Appl. Phys. Express 9, 025501-1-025501–4. https://doi.org/10.7567/APEX.9.025501 (2016).Article 

ADS 

CAS 

Google Scholar 

Miyake, H., Lin, C.-H., Tokoro, K. & Hiramatsu, K. Preparation of high-quality AlN on sapphire by high-temperature face-to-face annealing. J. Cryst. Growth 456, 155–159. https://doi.org/10.1016/j.jcrysgro.2016.08.028 (2016).Article 

ADS 

CAS 

Google Scholar 

Hironaka, K. et al. Characterization of AlN single crystal fabricated by a novel growth technique, ‘“pyrolytic transportation method”’. J. Cryst. Growth 312, 2527–2529. https://doi.org/10.1016/j.jcrysgro.2010.04.007 (2010).Article 

ADS 

CAS 

Google Scholar 

Adachi, M., Maeda, K., Tanaka, A., Kobatake, H. & Fukuyama, H. Homoepitaxial growth of AlN on nitrided sapphire by LPE method using Ga–Al binary solution. Phys. Status Solidi A 208, 1494–1497. https://doi.org/10.1002/pssa.201001014 (2011).Article 

ADS 

CAS 

Google Scholar 

Song, Y., Kawamura, F., Taniguchi, T., Shimamura, K. & Ohashi, N. Conditions for growth of AlN single crystals in Al–Sn flux. J. Am. Ceram. Soc. 101, 4876–4879. https://doi.org/10.1111/jace.15865 (2018).Article 

CAS 

Google Scholar 

Kangawa, Y., Toki, R., Yayama, T., Epelbaum, B. M. & Kakimoto, K. Novel solution growth method of bulk AlN using Al and Li3N solid sources. Appl. Phys. Express 4, 095501-1-095501–3. https://doi.org/10.1143/APEX.4.095501 (2011).Article 

ADS 

CAS 

Google Scholar 

Wu, P., Funato, M. & Kawakami, Y. Environmentally friendly method to grow wide-bandgap semiconductor aluminum nitride crystals: elementary source vapor phase epitaxy. Sci. Rep. 5(17405), 1–9. https://doi.org/10.1038/srep17405 (2015).Article 

CAS 

Google Scholar 

Rounds, R. et al. Thermal conductivity of single-crystalline AlN. Appl. Phys. Express 11, 071001-1-071001–3. https://doi.org/10.7567/APEX.11.071001 (2018).Article 

ADS 

Google Scholar 

Wang, Q. et al. Influence of crucible shape on mass transport in AlN crystal growth by physical vapor transport process. J. Cryst. Growth 515, 21–25. https://doi.org/10.1016/j.jcrysgro.2019.02.059 (2019).Article 

ADS 

CAS 

Google Scholar 

Tojo, S. et al. BULK AlN Influence of high-temperature processing on the surface properties of bulk AlN substrates. J. Cryst. Growth 446, 33–3834. https://doi.org/10.1016/j.jcrysgro.2016.04.030 (2016).Article 

ADS 

CAS 

Google Scholar 

Kumagai, Y. et al. Preparation of a freestanding AlN substrate from a thick AlN layer grown by hydride vapor phase epitaxy on a bulk AlN substrate prepared by physical vapor transport. Appl. Phys. Exp. 5, 055504-1-055504–3. https://doi.org/10.1143/APEX.5.055504 (2012).Article 

ADS 

CAS 

Google Scholar 

Hartmann, C. et al. Preparation of deep UV transparent AlN substrates with high structural perfection for optoelectronic devices. Cryst. Eng. Comm. 18, 3488–3497. https://doi.org/10.1039/C6CE00622A (2016).Article 

CAS 

Google Scholar 

Dalmau, R., Moody, B., Xie, J., Collazo, R. & Sitar, Z. Characterization of dislocation arraysin AlN single crystals grown by PVT. Phys. Status Solidi A 208, 1545–1547. https://doi.org/10.1002/pssa.201000957 (2011).Article 

ADS 

CAS 

Google Scholar 

Shen, L. et al. AlGaN/AlN/GaN high-power microwave HEMT. IEEE Electron Device Lett. 22, 457–459. https://doi.org/10.1109/55.954910 (2001).Article 

ADS 

CAS 

Google Scholar 

Hu, X. et al. Proton-irradiation effects on AlGaN/AlN/GaN high electron mobility transistors. IEEE Trans. Nucl. Sci. 50, 1791–1796. https://doi.org/10.1109/TNS.2003.820792 (2003).Article 

ADS 

CAS 

Google Scholar 

Higashiwaki, M., Mimura, T. & Matsui, T. AlN/GaN insulated-gate HFETs using Cat-CVD SiN. IEEE Electron Device Lett. 27, 719–721. https://doi.org/10.1109/LED.2006.881087 (2006).Article 

ADS 

CAS 

Google Scholar 

Kawai, H., Hara, M., Nakamura, F. & Imanaga, S. AIN/GaN insulated gate heterostructure FET with regrown WGaN ohmic contact. Electron. Lett. 34, 592–593. https://doi.org/10.1049/el:19980464 (1998).Article 

ADS 

CAS 

Google Scholar 

Luther, B. P., DeLucca, J. M., Mohneya, S. E. & Karlicek, R. F. Analysis of a thin AlN interfacial layer in Ti/Al and Pd/Al ohmic contacts to n-type GaN. Appl. Phys. Lett. 71, 3859–3861. https://doi.org/10.1063/1.120526 (1997).Article 

ADS 

CAS 

Google Scholar 

Wang, H. et al. Employing Al buffer layer with Al droplets-distributed surface to obtain high-quality and stress-free GaN epitaxial films on Si substrates. J. Mater. Sci. 52, 1318–1329. https://doi.org/10.1007/s10853-016-0427-1 (2017).Article 

ADS 

CAS 

Google Scholar 

Kröncke, H., Figge, S., Hommel, D. & Epelbaum, B. M. Determination of the temperature dependent thermal expansion coefficients of bulk AlN by HRXRD. Acta Phys. Pol. A 114, 1193–1200 (2008).Article 

ADS 

Google Scholar 

Dwiliński, R. et al. Excellent crystallinity of truly bulk ammonothermal GaN. J. Cryst. Growth 310, 3911–3916. https://doi.org/10.1016/j.jcrysgro.2008.06.036 (2008).Article 

ADS 

CAS 

Google Scholar 

Bockowski, M. et al. Growth and characterization of bulk HVPE-GaN—pathway to highly conductive and semi-insulating GaN substrates. ECS Trans. 80, 991–1003. https://doi.org/10.1149/08010.0991ecst (2017).Article 

CAS 

Google Scholar 

Fujito, K. et al. Bulk GaN crystals grown by HVPE. J. Cryst. Growth 311, 3011–3014. https://doi.org/10.1016/j.jcrysgro.2009.01.046 (2009).Article 

ADS 

CAS 

Google Scholar 

Bao, Q. et al. Ammonothermal growth of GaN on a self-nucleated GaN seed crystal. J. Cryst. Growth 404, 168–171. https://doi.org/10.1016/j.jcrysgro.2014.06.052 (2014).Article 

ADS 

CAS 

Google Scholar 

Dwiliński, R. et al. Ammonothermal GaN substrates: growth accomplishments and applications. Phys. Status Solidi A 208, 1489–1493. https://doi.org/10.1002/pssa.201001196 (2011).Article 

ADS 

CAS 

Google Scholar 

Mori, Y. et al. Growth of bulk GaN crystals by Na flux method. Phys. Status Solidi C 8, 1445–1449. https://doi.org/10.1002/pssc.201000911 (2011).Article 

ADS 

CAS 

Google Scholar 

Wu, X., Hao, H., Li, Z., Fan, S. & Xu, Z. Fabrication of GaN single crystals at 700 °C using Na–Li–Ca mixed flux system. AIP Adv. 8, 055326-1-055326–1. https://doi.org/10.1063/1.4999196 (2018).Article 

ADS 

CAS 

Google Scholar 

Chen, C., Sun, S., Chou, M. M. & Xie, K. In situ inward epitaxial growth of bulk macroporous single crystals. Nat. Commun. 8(2178), 1–8. https://doi.org/10.1038/s41467-017-02197-6 (2017).Article 

ADS 

CAS 

Google Scholar 

Hu, J. et al. Materials and processing issues in vertical GaN power electronics. Mat. Sci. Semicon. Proc. 78, 75–84. https://doi.org/10.1016/j.mssp.2017.09.033 (2018).Article 

CAS 

Google Scholar 

Amano, H. Progress and prospect of the growth of wide-band-gap group III nitrides: development of the growth method for single-crystal bulk GaN. Jpn. J. Appl. Phys. 52, 050001-1-050001–10. https://doi.org/10.7567/JJAP.52.050001 (2013).Article 

ADS 

CAS 

Google Scholar 

Ehrentraut, D. et al. High quality, low cost ammonothermal bulk GaN substrates. Jpn. J. Appl. Phys. 52, 08JA01-1-08JA01-4. https://doi.org/10.7567/JJAP.52.08JA01 (2013).Article 

CAS 

Google Scholar 

Nakao, W., Fukuyama, H. & Nagata, K. Gibbs energy change of carbothermal nitridation reaction of Al2O3 to Form AlN and reassessment of thermochemical properties of AlN. J. Am. Ceram. Soc. 85, 889–896. https://doi.org/10.1111/j.1151-2916.2002.tb00188.x (2002).Article 

CAS 

Google Scholar 

Jacob, K. T. & Rajitha, G. Discussion of enthalpy, entropy and free energy of formation of GaN. J. Cryst. Growth 311, 3806–3810. https://doi.org/10.1016/j.jcrysgro.2009.05.016 (2009).Article 

ADS 

CAS 

Google Scholar 

Roder, C., Einfeldt, S., Figge, S. & Hommel, D. Temperature dependence of the thermal expansion of GaN. Phys. Rev. B 72, 085218-1-085218–6. https://doi.org/10.1103/PhysRevB.72.085218 (2005).Article 

ADS 

CAS 

Google Scholar 

Figge, S., Kröncke, H., Hommel, D. & Epelbaum, B. M. Temperature dependence of the thermal expansion of AlN. Appl. Phys. Lett. 94, 101915-1-101915–3. https://doi.org/10.1063/1.3089568 (2009).Article 

ADS 

CAS 

Google Scholar 

Bellosi, A., Landi, E. & Tampieri, A. Oxidation behavior of aluminum nitride. J. Mater. Res. 8, 565–572. https://doi.org/10.1557/JMR.1993.0565 (1993).Article 

ADS 

CAS 

Google Scholar 

Lavrenko, V. A. & Alexeev, A. F. Oxidation of sintered aluminium nitride. Ceram. Int. 9, 80–82. https://doi.org/10.1016/0272-8842(83)90036-6 (1983).Article 

CAS 

Google Scholar 

Osborne, E. W. & Norton, M. G. Oxidation of aluminium nitride. J. Mater. Sci. 33, 3859–3865. https://doi.org/10.1023/A:1004667906474 (1998).Article 

ADS 

CAS 

Google Scholar 

Yeh, C.-T. & Tuan, W.-H. Oxidation mechanism of aluminum nitride revisited. J. Adv. Ceram. 6, 27–32 (2017).Article 

CAS 

Google Scholar 

Download referencesAcknowledgementsThis work was supported by JSPS KAKENHI Grant No. JP17K19067.Author informationAuthors and AffiliationsInstitute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, JapanMarsetio Noorprajuda, Makoto Ohtsuka, Masayoshi Adachi & Hiroyuki FukuyamaAuthorsMarsetio NoorprajudaView author publicationsYou can also search for this author in

PubMed Google ScholarMakoto OhtsukaView author publicationsYou can also search for this author in

PubMed Google ScholarMasayoshi AdachiView author publicationsYou can also search for this author in

PubMed Google ScholarHiroyuki FukuyamaView author publicationsYou can also search for this author in

PubMed Google ScholarContributionsM.O., M.A., and H.F. conceived the experiment, and M.N. conducted the experiment. All authors analysed the results and reviewed the manuscript.Corresponding authorCorrespondence to

Hiroyuki Fukuyama.Ethics declarations

Competing interests

The authors declare no competing interests.

Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissionsAbout this articleCite this articleNoorprajuda, M., Ohtsuka, M., Adachi, M. et al. AlN formation by an Al/GaN substitution reaction.

Sci Rep 10, 13058 (2020). https://doi.org/10.1038/s41598-020-69992-yDownload citationReceived: 19 February 2020Accepted: 13 July 2020Published: 03 August 2020DOI: https://doi.org/10.1038/s41598-020-69992-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Download PDF

Advertisement

Explore content

Research articles

News & Comment

Collections

Subjects

Follow us on Facebook

Follow us on Twitter

Sign up for alerts

RSS feed

About the journal

Open Access Fees and Funding

About Scientific Reports

Contact

Journal policies

Calls for Papers

Guide to referees

Editor's Choice

Journal highlights

Publish with us

For authors

Language editing services

Submit manuscript

Search

Search articles by subject, keyword or author

Show results from

All journals

This journal

Search

Advanced search

Quick links

Explore articles by subject

Find a job

Guide to authors

Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

About us

Press releases

Press office

Contact us

Discover content

Journals A-Z

Articles by subject

Protocol Exchange

Nature Index

Publishing policies

Nature portfolio policies

Open access

Author & Researcher services

Reprints & permissions

Research data

Language editing

Scientific editing

Nature Masterclasses

Research Solutions

Libraries & institutions

Librarian service & tools

Librarian portal

Open research

Recommend to library

Advertising & partnerships

Advertising

Partnerships & Services

Media kits

Branded

content

Professional development

Nature Careers

Nature

Conferences

Regional websites

Nature Africa

Nature China

Nature India

Nature Italy

Nature Japan

Nature Korea

Nature Middle East

Privacy

Policy

Use

of cookies

Your privacy choices/Manage cookies

Legal

notice

Accessibility

statement

Terms & Conditions

Your US state privacy rights

© 2024 Springer Nature Limited

Close banner

Close

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Email address

Sign up

I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

Close banner

Close

Get the most important science stories of the day, free in your inbox.

Sign up for Nature Briefing